WGT 2020 — Saturday, January 25th — New Orleans

Michael Greenberg

Pomona College

Gradual Algebraic Data Types 5™k wommoorcie

Eric Tanter
University of Chile

Friendship ended with HIGHER ORDER FUNCTIONS

data ExXpr = Now

Algebraic Data Types

Var VarName

| Lam VarName Expr are my best friend

| App Expr Expr

| Zero

(\x > X(x X))
> 1T (X))

| Succ Expr

deriving Eq

Motvating Examples

(define (flatten x)
(cond
[((null? xX) X]
[(cons? xX)
(append (flatten (car xs))
(flatten (cdr xs)))]
[else (list x8)]))

<books>
<book id="1" title="Solaris">
<author name="Stanislaw Lem”
age=“98" />
</book>
<book id="2" title="Foundation">
<author name="Isaac Asimov” />
<review>Best of the series!</review>
</book>
</books>

[[Name "Stanislaw Lem", Age 98],
[Name "lsaac Asimov"]]

A Real-1sh Model of ADT's

B (0] A

& e A N-(C Hooo e Hosloe . adll
5 o &

eV IXFee e .o

matchewith{cx...xme;..;cx...x— e}

Adding the Gradual Type

L B> (, | A |?

& e A N-(C Hooo e Hosloe . adll
5 o &

eV IXFee e .o

matchewith{cx...xme;..;cx...x— e}

Flatten

data List = Nil | Cons % List
(define (flatten x)

Lone let flatten (1:?) =
LBy x) 2 match 1 with
[(cons? X) | Nil => Nil
(append (flatten (car xs)) | Cons v 1'=>
(flatten (cdr xs)))] append (flatten v) (flatten 1')
| _=>Cons1Nil

[else (list x8)]))
end

A Real-1sh Model of ADT's

B (0] A

& e A N-(C Hooo e Hosloe . adll
5 o &

eV IXFee e .o

matchewith{cx...xme;..;cx...x— e}

Adding the Gradual Constructor

B 0| A2

e L AN-C ull Ho—e | Ho- T o ol
e & oite
er=wvixreeirce. v

matchewith{gx...x~e;..;gx...x— e}

AML Processing

data Attribute = ¢,
data XML = Text String | ¢,
parseXML : String -> XML

let collectAuthors (xml : XML) : List =
match xml with
Text str => Nil

Author attrs elems => Cons attrs Nil

¢’ attrs elems =>
concat (map collectAuthors elems)

end

<books>
<book id="1" title="Solaris">
<author name="Stanislaw Lem”
age=“98" />
</book>
<book id="2" title="Foundation">
<author name="Isaac Asimov” />
<review>Best of the series!</review>
</book>
</books>

[[Name "Stanislaw Lem", Age 98],
[Name "lsaac Asimov"]]

Just use CDuce?

(define (flatten x) type Tree('a) =
(cond (Ca\[Any*]) | [(Tree('a))*]
[((null? x) X]
[(cons? X) let flatten ((Tree('a)) ->['a*])
(append (flatten (car xs)) | [1->1]
(flatten (cdr xs8)))] | [h;t] -> (flatten h)@(flatten t)

[else (list x8)])) | X -> [X]

Just use Haskell?

{-# LANGUAGE
GADTSs, TypeApplications, ScopedTypeVariables, ViewPatterns,
PolyKinds, DataKinds

#) . .
module Flatten where flatten :: [Dynamic] -> [Dynamic]
import Data.Dynamic ﬂatten [] = []
import Type.Reflection flatten (dx@(Dynamic rep X):dxs) =
data MaybeMatch (a :: k1) (b :: k2) where X' ++ flatten dxs

Match :: MaybeMatch a a where

NoMastch :: MaybeMatch a b

X' | App (isType @[] -> Match) arg <- rep

isType :: forall a b. Typeable a => TypeRep b -> MaybeMatch a b

isType (eqTypeRep (typeRep @a,) -> Just HRefl) = Match = flatten (ma’p (sma,PtToDyn &Pg) X)
isType _ = NoMatch ‘ Otherwise
smartToDyn :: TypeRep a -> a -> Dynamic = [dX]

smartToDyn (isType @Dynamic -> Match) x =X
smartToDyn rep X = Dynamic rep X

Z

1S

Who wants th

o

t
4
b/

w

T'he Mouvating Examples are Not Good Ones

* Haskell and CDuce can already write flatten

* OCaml less easily

* XML processing in typed languages is well understood
* What's the point?

* Expressivity!

: See my SNAPL 2019 paper,
* Porting! / .

“I'he Dynamic Practice and Static Theory: of
Eradual ypine:

* Interop?

Desiderata and Key Questions

* Nominal-ish systems, like Haskell and OCaml
* What is a complete pattern match?

* What does it look like to name a constructor not statically included in any datatype? In
construction? In pattern matching?

* What about models of nested matching? When should we communicate mismatched
branch types to the programmer and when should they be coerced to the dynamic type?

+ Who is this for?

« Static FP folks are maybe not so interested—to their detriment!

Row types

* Coming up next: a nicely developed gradual interpretration of row types!
+ Hits lots of our desiderata!

“ Cool relationship to polymorphic variants!

