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Algebraic data types are a distinctive feature of statically typed functional programming languages. Existing

gradual typing systems support algebraic data types with set-theoretic approaches, e.g., union and intersection

types. What would it look like for a gradual typing system to support algebraic data types directly? We

describe our early explorations of the design space of gradually typed algebraic data types using AGT [Garcia

et al. 2016].
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1 INTRODUCTION
Algebraic data types (ADTs) are one of the defining features of statically typed functional program-

ming languages: it is difficult to imagine writing OCaml, Haskell, or Coq code without making use

of algebraic data types (via the type, data, and Inductive keywords, respectively). While they

are a critical feature, existing work on gradual types has taken a set-theoretic rather than algebraic

approach [Castagna and Lanvin 2017; Castagna et al. 2019; Siek and Tobin-Hochstadt 2016]. What

would it look like to relax the typing discipline of a language with ADTs?

We present progress on an account of a gradual type system with support for ADTs, in three

parts:

• A series of motivating examples identifying the kinds of programs that are challenging to

write in existing static regimes but may be easier with gradual typing (Section 2);

• A relaxation of a statically typed system with ADTs (λDT, Section 3) to include the unknown
type (λDT?, Section 4); and

• A relaxation of λDT to include open data types and unknown constructors, possibly generated

at runtime (λDT¿, Section 5).

As a general approach, we follow AGT [Garcia et al. 2016], deriving gradual systems from static

system by means of Galois connections. We have by no means exhausted the design space, and

critical questions remain both within our work itself and in how our work relates to existing work;

we discuss these issues in Section 6 and anticipate further, productive discussion at the workshop.

2 EXAMPLES
Early in the design of any gradual type system, it is critical to ask: what programs am I seeking to

allow that were previously disallowed by more rigid static checking? We offer two examples, both

drawn from Greenberg’s challenge problems [Greenberg 2019]: the flatten function on arbitrarily

nested lists (i.e., heterogenous tries); and XML processing. We give our examples in the concrete

syntax of our web-based prototype.
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Lest we get mired in the “Turing tarpit” [Perlis 1982], we should make it very clear that existing

languages of all stripes can more or less handle these examples: CDuce can handle them grace-

fully [Benzaken et al. 2003], while Haskell and OCaml do so with more difficulty (see Section 6 and

Greenberg [2019]). Our question is not one of whether these programs can be written, but how we

write them.

2.1 ADTs + gradual types = flatten

One of the canonical dynamic idioms is the flatten function [Fagan 1991], which amounts to a

linearization of a heterogeneous list of lists (of lists, of lists, etc.). In Scheme:

(define (flatten l)

(cond

[(null? l) l]

[(cons? l) (append (flatten (car l)) (flatten (cdr l)))]

[else (list l)]))

The flatten function is canonical because it is so simple, yet conventional static type systems

cannot accommodate the type of the variable l.2

In our prototype, we can express flatten with only a minimum of additional annotation by

giving l the unknown type:

let flatten (l:?) =

match l with

| Nil => Nil

| Cons v l' => append (flatten v) (flatten l')

| _ => Cons l Nil

end

The definition of flatten relies on the definition of a list ADT where the values can be of any

type, i.e., heterogeneous lists.
3

data List = Nil | Cons ? List

The definition of append is conventional and entirely statically typed. When we evaluate a call to

append, no dynamic checks will be necessary.

let append (l1:List) (l2:List) =

match l1 with

| Nil => l2

| Cons v l1 ' => Cons v (append l1 ' l2)

end

The most interesting part of the implementation is flatten itself. Scheme uses cond and predi-

cates like null? and cons?; these predicates have (notional) type ? → bool. Our implementation,

on the other hand, uses a conventional pattern match on l, a variable of unknown type ?. The code
for flatten has three cases: one for each List constructor, and a catch-all case for values of any

other type. We have reached a critical design question:

Which constructors can/may/must we match on for dynamically typed scrutinees?

2
Complicated circumlocutions using typeclasses or Dynamic allow Haskell to express flatten, but it is difficult to imagine

actually using these approaches for the sort of ad hoc programming that calls for functions like flatten. In any case,

flatten is merely emblematic of the kinds of programs we might want to write.

3
Readers may expect polymorphic lists, but we’ve restricted ourselves to monomorphic types so far. See Section 6.

2



Gradual Algebraic Data Types WGT20, January 25, 2020, New Orleans

Our intention here is to have the branches of the match behave exactly like the corresponding

cases of the Scheme cond, matching the empty list, a cons cell, and everything else, respectively.

The precise choices we make for our static model of ADTs will yield different answers; see the

discussion of the predicate complete in Section 3.1.

2.2 Open data types for XML processing
Dynamic languages can deal with semi-structured data—XML, JSON, etc.—with loosely structured

data types, e.g., S-XML [Kiselyov 2002]. Statically typed languages tend to either use ‘stringy’

representations or fixed, static schemata. Can gradual typing help here?

Inspired by S-XML, we define XML data as either (a) textual CDATA or (b) tags represented as

constructors. In our prototype, we might write:

data Attribute = ¿
data XML = Text String | ¿
parseXML : String -> XML

The Text constructor models CDATA. The constructors representing tags will be determined at

runtime by the parseXML function. The technical means we use to accomplish this is the unknown
constructor, written ¿. When a datatype is definedwith ¿ in its constructor list, like XML or Attribute,
then that ADT is open, i.e, it can include arbitrary other constructors.

The parseXML function takes advantage of XML’s openness by mapping tag names to constructors.

Let us assume that, as its output contract, parseXML guarantees that each constructor will take two

arguments: a list of attributes and a list of children. As a concrete example, consider the following

XML:

<books>
<book id="1" title="Solaris">
<author name="Stanislaw Lem" age="98">

</book>
<book id="2" title="Foundation">
<author name="Isaac Asimov">
<review>Best of the series!</review>

</book>
</books>

The output of parseXML ought to have the following form, using Haskell list notation for legibility:

Books [] [

Book [Id 1, Title "Solaris"] [

Author [Name "Stanislaw Lem", Age 98] []

],

Book [Id 2, Title "Foundation"] [

Author [Name "Isaac Asimov"] [],

Review [] [Text "Best of the series!"]

]

]

Each attribute corresponds to a unary constructor whose name matches the attribute name and

whose argument encodes the attribute value, e.g., id="1" corresponds to the Id constructor applied
to the number 1. Each tag corresponds to a binary constructor where (a) the name matches the

tag name, (b) the first argument to the constructor is a list of attributes (of type Attribute), and

3
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(c) the second argument to the constructor is a list of child elements (of type XML). (To be clear, we

cannot yet implement parseXML in our prototype implementation; see Section 6.)

Now, let us say we want to collect all the author names in this structure, i.e., the child elements

of every <author> tag. As with any standard ADT, pattern matching is our best option.

let collectAuthors (xml : XML) : List =

match xml with

| Text str => Nil

| Author attrs elems => Cons attrs Nil

| ¿ attrs elems => concat (map collectAuthors elems)

end

The XML data type declares only one constructor, Text, which represents CDATA; other tags are

represented using unknown constructors. The collectAuthors function first explicitly matches

on Text, to ignore it. It also explicitly matches on the Author constructor (which models <author>
tags), returning the attributes, attrs. The last case matches all other tags; the pattern ¿ attrs elems

matches any constructor with two arguments, i.e., any other tag.

Running collectAuthors on the example XML above yields the following list of attributes:
4

[[Name "Stanislaw Lem", Age 98],

[Name "Isaac Asimov"]]

Continuing with the example, we can continuously evolve the datatypes making them progres-

sively more static, e.g. by adding constructors to them as we have certainty of their shape and

name. After adding the constructors relevant to collectAuthors the data definitions may look as

follows:

data Attribute = Age Int | Name String | ¿
data XML = Text String | Author List List | ¿

Eventually, we can make both types fully static adding every tag and attribute used in the XML

as a constructor to the respective ADT and closing them (removing ¿ from the list of variants).

Interestingly, the functions that use these datatypes shouldn’t change in this process.

3 A STATIC MODEL OF ADTS
To use AGT [Garcia et al. 2016] to derive a gradually-typed language, one must start with a

statically-typed language and then provide an interpretation of gradual types in terms of sets of

static types. Our static system, λDT, is a monomorphic lambda calculus with support for algebraic

data type definitions (Figure 1). At the term level, λDT extends the simply typed lambda calculus

with constants k , type ascriptions (e :: T ), constructor applications c e , and pattern matching.

We use the metavariable k for constants, c for constructors, and C for sets of constructors. As a

notational convention, we put lines over vectors of terms (see, e.g., Match). We write A = B to

mean the proposition that A and B are equal; we write A � B to mean that A is defined to be B.
At the type level, λDT collects algebraic data types in a datatype context ∆, which maps each ADT

A to a set of constructors C; the types of individual constructors are held in constructor contexts

4
Sadly there is no way in our model of fully enforcing parseXML’s output contract: how can we ensure that each tag’s

constructor takes exactly two arguments, a list of attributes and a list of child elements? We haven’t fully worked out the

formal details, but we can imagine partially open ADTs that only accept unknown constructors with a specific shape, as in

data Attribute = #? String | #? Int.
Further, a reviewer notes that our behavior on a <text> tag is ambiguous! A real implementation would have to

somehow distinguish such unknown constructors from defined ones.
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Datatypes
Datatype names A ∈ DTName
Constructor names c ∈ CtorName
Constructor sets C ∈ Ctors ⊆ CtorName

Types
Base types B ::= int | . . .
Types T ::= B | T → T | A

Contexts
Type contexts Γ ::= · | Γ,x : T
Datatype contexts ∆ ::= · | ∆,A : C
Constructor contexts Ξ ::= · | Ξ, c : T × · · · ×T

Terms
Expressions e ::= x | k | e e | λx :T . e | (e :: T ) | c e . . . e |

match e with {c x . . . x 7→ e; . . . ; c x . . . x 7→ e}
Values v ::= k | λx :T . e | c v . . .v
Constants k ::= 0 | 1 | . . .

+ | . . .

Fig. 1. λDT syntax

Ξ, which maps each c to a product of zero or more types.
5
Our model calculus assumes that you

provide a single, global ∆ and Ξ for all algebraic datatypes. Our prototype uses the syntax in

Section 2.

The static semantics for λDT is more or less standard (Figure 2), though some care should be

taken with the context well-formedness rules for ∆ and Ξ. Well-formed datatype contexts ∆ never

assign the same constructor to two different datatypes. Well-formed constructor contexts Ξ assign

constructors well-formed types to constructors that are already associated with an ADT A in ∆. We

have omitted the type well-formedness rules, which demand that all referenced ADTs A be defined

in ∆. Our formal model does not have recursion, but our prototype does.

The typing rules for constructors (Ctor) and pattern matching (Match) make use of some helper

functions and predicates—making these helpers explicit is part of the AGT approach [Garcia et al.

2016]. The interesting helpers here do characterize: which type a constructor belongs to (cty∆),
the arity and argument types of a given constructor (cargΞ), whether or not a match is complete

(complete∆), and whether or not the branches of a match all return the same type (equaten). To
find the type of a constructor c , the helper cty∆(c) does a reverse lookup in the datatype context, ∆.
Looking up the arguments of a constructor c by cargΞ(c) merely looks up the given constructor in

the constructor context Ξ. According to complete∆(C,A), the constructors C are a complete match

for A when C is exactly the set of A’s constructors in ∆. And, finally, equaten returns its identical

inputs or is undefined on non-equal inputs.

5
We could have instead added tuples and the unit type to the language and had each constructor take a single argument,

but our approach seems more fundamental as we can then derive the unit and tuple types (at the cost of some metatheoretic

complexity).
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Context well-formedness rules ⊢ ∆ ∆ ⊢ Ξ ∆;Ξ ⊢ Γ

⊢ ·
∆-Empty

⊢ ∆ A < dom(∆) ∀A′ ∈ ∆, ∆(A′) ∩C = ∅

⊢ ∆,A : C
∆-Ext

⊢ ∆

∆ ⊢ ·
Ξ-Empty

∆ ⊢ Ξ ∆;Ξ ⊢ Ti ∃A ∈ dom(∆), cty∆(c) = A

∆ ⊢ Ξ, c : T1 × · · · ×Tn
Ξ-Ext

∆ ⊢ Ξ

∆;Ξ ⊢ ·
Γ-Empty

∆;Ξ ⊢ Γ ∆;Ξ ⊢ T

∆;Ξ ⊢ Γ,x : T
Γ-Ext

Typing rules ∆;Ξ; Γ ⊢ e : T

∆;Ξ ⊢ Γ T � Γ(x)

∆;Ξ; Γ ⊢ x : T
Var

∆;Ξ ⊢ Γ T � ty(k)

∆;Ξ; Γ ⊢ k : T
Const

∆;Ξ; Γ ⊢ e1 : T1 ∆;Ξ; Γ ⊢ e2 : T2 T2 = dom(T1) T � cod(T1)

∆;Ξ; Γ ⊢ e1 e2 : T
App

∆;Ξ; Γ,x : T1 ⊢ e : T2

∆;Ξ; Γ ⊢ λx :T1. e : T1 → T2
Lam

∆;Ξ; Γ ⊢ e : T

∆;Ξ; Γ ⊢ e :: T : T
Ascribe

(∀i .1 ≤ i ≤ n) ∆;Ξ; Γ ⊢ ei : Ti cargΞ(c) = T1 × · · · ×Tn A � cty∆(c)

∆;Ξ; Γ ⊢ c e1 . . . en : A
Ctor

(∀i .1 ≤ i ≤ n) ∆;Ξ; Γ ⊢ e : T complete∆({c1, . . . , cn} ,T ) T � equaten(T
′
1
, . . . ,T ′

n)

Ti1 × · · · ×Timi � cargΞ(ci ) ∆;Ξ; Γ,xi1 : Ti1, . . . ,ximi : Timi ⊢ ei : T
′
i

∆;Ξ; Γ ⊢ match e with {c1 x11 . . . x1m1
7→ e1; . . . ; cn xn1 . . . xnmn 7→ en} : T

Match

Helpers

cty∆(c) =

{
A c ∈ ∆(A)

⊥ otherwise

cargΞ(c) = Ξ(c) complete∆(C,A) ⇔ ∆(A) = C

dom(T1 → T2) = T1
dom(_) = ⊥

cod(T1 → T2) = T2
cod(_) = ⊥

equaten(T , . . . ,T ) = T
equaten(_, . . . , _) = ⊥

Fig. 2. λDT static semantics

We omit the completely conventional operational semantics, but we have defined them formally

as call-by-value small-step semantics using reduction frames. We have proved our static semantics

sound using the standard, syntactic, progress/preservation-based approach [Wright and Felleisen

1994].

3.1 The design space of complete match expressions
The complete predicate is used in Match to determine whether a pattern match sufficiently covers

the type of the scrutinee. If a pattern match’s set of constructors do not pass complete’s muster,

6
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data A = A0 | A1 in

data B = B0 | B1 in

match A0 with

| A0 -> 0

end

(a) A sober-only program

data A = A0 | A1 in

data B = B0 | B1 in

match A0 with

| A0 -> 0

| A1 -> 1

end

(b) An exact program (that type
checks in sober and complete, too)

data A = A0 | A1 in

data B = B0 | B1 in

match A0 with

| A0 -> 0

| A1 -> 1

| B0 -> 2

end

(c) A complete-only program

Fig. 3. Programs for each non-trivial complete∆ semantics

then the program does not typecheck. We have identified four possible semantics for complete,
each of which treats the set of constructors C forming the branches of the match differently in

terms of the hypothetical ADT A it is matching against:

• Sober: ∆(A) ⊇ C
The set of constructors C need not be exhaustive, but only a single ADT’s constructors can

be used.

• Exact: ∆(A) = C
The set of constructors C exactly matches the constructors of an ADT A.

• Complete: ∆(A) ⊆ C
The set of constructorsC matches all of the constructors of an ADT A, but may match others.

• Whatever: ⊤
All matches are considered complete.

The general relationship between the four possible semantics is implied by the underlying

relations: ⊇ for sober; = for exact; and ⊆ for complete; and a trivial, total relation for whatever.

We can expect pattern matches that type check in the exact regime to typecheck in the other

two non-trivial ones, but the differences are perhaps best understood by example: three programs

suffice to distinguish the non-trivial semantics (Figure 3). We ignore the fourth, trivial ‘whatever’

semantics in this comparison. The sober semantics allows incomplete matches—like Haskell without

-fwarn-incomplete-patterns. Therefore this semantics cannot guarantee that a match does not

get stuck. The first program (Figure 3a) only typechecks using the sober semantics, because the

match expression only has cases for constructor from A. The second program (Figure 3b) typechecks

with the exact (and all other) semantics. The third program (Figure 3c) only typechecks with the

complete semantics. The match expression has a case for each constructor in A—and some additional

ones.

For conventional notions of errors and soundness, sober is unsound (change the scrutinee to

A1 in Figure 3a) and both exact and complete are sound. To our knowledge, no statically typed

language follows the complete semantics, presumably because such unreachable cases indicate

some kind of logic error. But matching on constructors from more than one ADT seems like quite

a useful feature in a gradually typed system. The exact and complete semantics are both appealing

candidates, and both yield interesting gradually typed systems under AGT.

7
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Types G ::= B | G → G | A | ?
Terms e ::= v | x | εe :: G | e e | c e . . . e |

match e with {c x . . . x 7→ e; . . . ; c x . . . x 7→ e}
Patterns p ::= c | _

Fig. 4. λDT? syntax

4 GRADUAL ADTS
We use AGT to to lift λDT into λDT?. The general idea is as follows: we extend the syntax of λDT to
use gradual typesG , which include the unknown type ? (Figure 4). We then define two functions: a

concretization function γ , which maps gradual typesG to sets of static λDT types; and an abstraction

function α , which maps sets of static types back to gradual types. The core AGT methodology

generates rules and helpers for the gradual calculus (here, λDT?) by ‘lifting’ the corresponding parts

of the static calculus (here, λDT) via γ and α (Figure 5).

The lifted versions of functions aremarkedwith a tilde.While we generally refer those not familiar

with the technique to the original paper [Garcia et al. 2016], the rule for �equaten(G1, . . . ,Gn) is

exemplary: to applyT -type operator to aG-type, we use the original predicate on each type in γ (G);
to get back from the set of T -types to a G-type, use α . Some of our predicates use only one of γ or

α—the other direction isn’t necessary. For example,
�complete∆(C,G) only needs γ and c̃argΞ(c) only

needs α . We compute concise forms for each of our lifted predicates directly in Figure 5—though of

course these concise forms must be proved correct, not merely sketched. A wildcard (_) can be used

in a pattern match to match anything, even non constructors. This is crucial to allow expressions

of an unknown type (?) to be matched in match expressions as seen in the example of Section 2.1.

We have developed a version of λDT? that uses evidence to derive an operational semantics

with runtime checks. We omit it here beyond the syntactic term ϵe :: G, but suffice to say that

the conventional approach generates a semantics that can appropriately combine ADTs and the

unknown type such that there are no stuck states at runtime—only correct runs and evidence

failures (which correspond to failed casts).

5 GRADUAL CONSTRUCTORS
While λDT? extends λDT by adding the unknown type ?, we can extend λDT on a different axis:

by adding ¿, the unknown constructor, and ?A, the type of unknown open datatypes. Where ? is
interpreted by γ as the set of all possible types, ¿ is interpreted as the set of all possible constructors
and ?A as the set of all open datatypes (Figure 6). The unknown constructor can be listed in ∆(A)
as a constructor of A to indicate that A is an open datatype, where arbitrary new constructors may

appear. The unknown constructor can be listed in a pattern match to match arbitrary constructors

of a given arity (Match). The unknown constructor cannot, however, be used to actually construct

data! One must actually name the constructor. Some sort of syntactic affordance may be needed to

differentiate the three kinds of constructors: statically known and in ∆; statically known but not

mentioned in ∆; and dynamically generated. (See Section 6 for more discussion.) Superscripts on

constructors make arity explicit; explicit notation ensures that c̃argΞ of an unknown constructor

returns the correct number of types. We have made several particular choices here: according to

c̃argΞ(¿), arbitrary constructors take arguments of type ?, i.e., any type; complete matches are those

where the statically listed constructors cover all of the possibilites of some datatype.

8
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P ⊆ CtorName ∪ {_}
p ::= c | _

Galois connection γ : GType → P∗(Type) α : P∗(Type) → GType

γ× : ®GType → P∗( ®Type) α× : P∗( ®Type) → ®GType

γ (B) = {B}
γ (A) = {A}

γ (G1 → G2) = {T1 → T2 | T1 ∈ γ (G1),T2 ∈ γ (G2)}

γ (?) = Type

α({B}) = B
α({A}) = A

α(
{
Ti1 → Ti2

}
) = α(

{
Ti1

}
) → α(

{
Ti2

}
)

α(
{
T
}
) = ? otherwise

γ (G1 × · · · ×Gn) = {T1 × · · · ×Tn | Ti ∈ γ (Gi )}

α(
{
Ti1 × · · · ×Tin

}
) = α(

{
Ti1

}
) × · · · × α(

{
Tin

}
)

α(
{
T
}
) = {?, ? × ?, ? × ? × ?, . . .}

Static semantics ∆;Ξ; Γ ⊢ e : G

(∀i .1 ≤ i ≤ n) ∆;Ξ; Γ ⊢ ei : G
′
i ∆;Ξ ⊢ Gi ∼ G ′

i
G1 × · · · ×Gn � c̃argΞ(c) A � cty∆(c)

∆;Ξ; Γ ⊢ c e1 . . . en : A
Ctor

(∀i .1 ≤ i ≤ n) ∆;Ξ; Γ ⊢ e : G �complete∆({p1, . . . ,pn} ,G) Gi1 × · · · ×Gimi � c̃argΞ(pi )
∆;Ξ; Γ,xi1 : G

′
i1, . . . ,ximi : G

′
imi

⊢ ei : G
′
i ∆;Ξ ⊢ G ′

i1 ∼ Gi1 . . . ∆;Ξ ⊢ G ′
imi

∼ Gimi

∆;Ξ; Γ ⊢ match e with {p1 x11 . . . x1m1
7→ e1; . . . ;pn xn1 . . . xnmn 7→ en} : �equate∆n({G ′

1
, . . . ,G ′

n
}
)

Match

Helpers

�complete∆(P ,G) = _ ∈ P ∨ ∀T ∈ γ (G), complete∆(P \ {_} ,T )

�equaten(G1, . . . ,Gn) = α(
{
equaten(T1, . . . ,Tn) | Ti ∈ γ (Gi )

}
)

=
.n

i=1Gi

c̃argΞ(c) = α({Ξ(c)}) = cargΞ(c)
c̃argΞ(_) = ⟨⟩

d̃om(G1 → G2) = G1

d̃om(?) = ?

d̃om(G) = ⊥

c̃od(G1 → G2) = G2

c̃od(?) = ?

c̃od(G) = ⊥

Fig. 5. λDT? typing rules and predicates

6 DISCUSSION
What about OCaml’s polymorphic and extensible variants, Haskell’s Dynamic, and CDuce [Benzaken
et al. 2003; Garrigue 2000; Peyton Jones et al. 2016; Zenger and Odersky 2001]? CDuce, in particular

9
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finds it easy to type a function like flatten, as shown in Greenberg [2019]. We are slightly

embarrassed that we have not yet discovered things that our systems can do that these others

cannot! Gradual algebraic data types surely smoothen the path from polymorphic variants to

standard data types, but can they capture novel idioms? Perhaps the better question to ask is: how

can we integrate CDuce’s features with those in more conventional functional languages?

What does it look like to name a constructor not statically included in any datatype? OCaml uses

backticks for polymorphic variants. What does it look like to generate constructors at runtime?

Technically, we can simply say that there is some function constant mkCtor : String → ?. But

can traditional, efficient implementations of ADTs accommodate such generated constructors?

Extensible variants in OCaml typically know all of the constructor names at link time, while an

XML parser would not know the names until run time. Research on open data types and open

functions is closely related [Löh and Hinze 2006].

Gradual type systems often talk about their “fully static” and “fully untyped” variants. A reviewer

asks what a “fully untyped” program is in our model. Depending on our notion of complete∆, the
fully untyped configuration may be ∆ = Ξ = ·, we revert to plain lambda calculus or it may be

∆ = Any : {¿}.
What about models of nested matching? When should we communicate mismatched branch

types to the programmer and when should they be coerced to the dynamic type?

Finally, a reviewer points out the connection between our work and New et al.’s work on gradual

typing and parametricity [New et al. 2019]. Their dynamic type is a recursive open sum type which

can accommodate runtime-generated types, while we are instead interested in runtime-generated

constructor names. How might these ideas be related?
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Types G ::= B | G → G | A | ? | ?A

O ⊆ GtorSet = CtorName ∪ {¿, _}
o ::= c | _ | ¿

Galois connection γ∆ : GType → P∗(Type) α : P∗(Type) → GType

γ∆(B) = {B}
γ∆(A) = {A}

γ∆(G1 → G2) = {T1 → T2 | T1 ∈ γ∆(G1),T2 ∈ γ∆(G2)}

γ∆(?A) = {A | ¿ ∈ ∆(A)}
γ∆(?) = Type

α({B}) = B
α({A}) = A

α(
{
Ti1 → Ti2

}
) = α(

{
Ti1

}
) → α(

{
Ti2

}
)

α(
{
A
}
) = ?A

α(
{
T
}
) = ? otherwise

γ∆ : GtorSet → P(Ctors) α : P(Ctors) → GtorSet

γ∆(O) =

{
{O} {¿, _} ⊈ O

{(O \ {¿, _}) ∪C | C ∈ Ctors \ ∆} otherwise

α(C) =


C C = {C}

{¿} ∪
⋂
C ∈C

C otherwise

Static semantics
∆;Ξ; Γ ⊢ e : G

(∀i .1 ≤ i ≤ n) ∆;Ξ; Γ ⊢ ei : G
′
i ∆;Ξ ⊢ Gi ∼ G ′

i
G1 × · · · ×Gn � c̃argΞ(c

n) G � c̃ty∆(c)

∆;Ξ; Γ ⊢ c e1 . . . en : G
Ctor

(∀i .1 ≤ i ≤ n) ∆;Ξ; Γ ⊢ e : G �complete∆({o1, . . . ,on} ,G) Gi1 × · · · ×Gimi � c̃argΞ(o
mi
i )

∆;Ξ; Γ,xi1 : G
′
i1, . . . ,ximi : G

′
imi

⊢ ei : G
′
i ∆;Ξ ⊢ G ′

i1 ∼ Gi1 . . . ∆;Ξ ⊢ G ′
imi

∼ Gimi

∆;Ξ; Γ ⊢ match e with {o1 x11 . . . x1m1
7→ e1; . . . ;on xn1 . . . xnmn 7→ en} : �equate∆n({G ′

1
, . . . ,G ′

n
}
)

Match

Helpers

c̃ty∆(c) = α({A | c ∈ γ∆(∆(A))})

c̃argΞ(c
n) = α({Ξ(c)}) = cargΞ(c)

c̃argΞ(¿
n) = ?1 × · · · × ?n

c̃argΞ(_
n) = ⟨⟩

�complete∆(O,G) = _ ∈ O ∨ ∀T ∈ γ∆(G), ∃C ∈ γ∆(O), complete∆(C,T )�equate∆n(G1, . . . ,Gn) = α(
{
equaten(T1, . . . ,Tn) | Ti ∈ γ∆(Gi )

}
)

=
.n

i=1Gi

Fig. 6. λDT¿ syntax and Galois connection
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