
Word Expansion Supports POSIX Shell Interactivity
Michael Greenberg

Pomona College

Claremont, CA, USA

michael@cs.pomona.edu

ABSTRACT
The POSIX shell is the standard tool to deploy, control, andmaintain

systems of all kinds; the shell is used on a sliding scale from one-off

commands in an interactive mode all the way to complex scripts

managing, e.g., system boot sequences. For all of its utility, the

POSIX shell is feared and maligned as a programming language:

the shell is feared because of its incredible power, where a single

command can destroy not just local but also remote systems; the

shell is maligned because its semantics are non-standard, using

word expansion where other languages would use evaluation.
I conjecture that word expansion is in fact an essential piece of

the POSIX shell’s interactivity; word expansion is well adapted to

the shell’s use cases and contributes critically to the shell’s interac-

tive feel.

CCS CONCEPTS
• Software and its engineering→ Scripting languages; Com-
mand and control languages; Language features; Semantics; •
General and reference→ Design; •Human-centered comput-
ing → Command line interfaces;

KEYWORDS
command line interface, interactive programming, word expansion,

string manipulation, splicing, evaluation

ACM Reference Format:
Michael Greenberg. 2018. Word Expansion Supports POSIX Shell Interactiv-

ity. In Proceedings of 2nd International Conference on the Art, Science, and
Engineering of Programming (<Programming’18> Companion). ACM, New

York, NY, USA, 8 pages. https://doi.org/10.1145/3191697.3214336

1 INTRODUCTION
As of 2018, command-line interfaces are the expert’s way of ex-

ercising control over their computer: installing, configuring, and

removing software; creating, moving, deleting, or otherwise manip-

ulating files in the filesystem; deploying, monitoring, and shutting

down services. While good management GUIs exist, some of the

foregoing tasks are often easier done in a shell; sometimes, these

tasks must be done in the shell, for lack of other options.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

<Programming’18> Companion, April 9–12, 2018, Nice, France
© 2018 Copyright held by the owner/author(s). Publication rights licensed to the

Association for Computing Machinery.

ACM ISBN 978-1-4503-5513-1/18/04. . . $15.00

https://doi.org/10.1145/3191697.3214336

While other shells exist, the POSIX shell is the de facto stan-

dard [10]; I’ll simply refer to it as “the shell”. As a programming

language, the POSIX shell has several distinctive features [4]: it

excels at controlling concurrent processes; it is used along a con-

tinuum from interactive command-at-a-time use to batching of

commands to lightweight scripting all the way to programming of

system-critical scripts; it is programmed in an exploratory, “print

what you do before you do it” fashion; shell scripts have the com-

puter literally do what a human would; and, its semantics mix

conventional evaluation with word expansion. I am particularly in-

terested in understanding this last feature: what is word expansion,

and how is it essential to the POSIX shell?

In this paper, I explain what word expansion is (Section 2) and

offer arguments for it being a quintessential interactive shell fea-

ture. (For readers unfamiliar with word expansion, the way that

* expands to the files in a directory is one seven forms of word

expansion.) By interactivity, I mean not just that the shell is used

an interactive way, issuing commands and receiving feedback, but

that all work in the shell—from command-at-a-time interactivity

to batch-oriented shell-script programming—is in some sense re-

ciprocal: the programmer works iteratively and tentatively, using

feedback from the shell to refine their code: prefixing commands

with echo to see which commands would be run, slowly increasing

the complexity of commands and scripts.

Two particular features of the shell support interactivity, and

are in turn supported by word expansion:

• Concise command syntax is a critical requirement for inter-

active, command-at-a-time console use.

• Commands that take flexible numbers of arguments (variadic
commands) are a better interface for interactive use than

programmatic iteration over commands with a fixed number

of arguments.

I offer two positive arguments, where word expansion supports in-

teractivity (Section 3): first, the shell’s core abstractions for manag-

ing processes are string-based, and word expansion has convenient

defaults for combining strings (Section 3.1); second, the commands

run in the shell have calling conventions that encourage the use

of, if not word expansion itself, an expansion-like mechanism (Sec-

tion 3.2).

I also offer negative arguments, where the lack of word expan-

sion hinders interactivity (Section 4). It is tempting to think that

adding appropriate shell-like functions to a conventional language

suffices to replace the shell: just add some easy ways to run com-

mands and some easy coercions between strings and lists using,

e.g., quasiquotation. Two academic shell ‘replacements’ (scsh and

Shill, neither of which use word expansion [15, 16]) have shown

their merits along these lines as replacements for the shell as a

programming language, but not as interactive tools (Section 4.1).

1

https://doi.org/10.1145/3191697.3214336
https://doi.org/10.1145/3191697.3214336

<Programming’18> Companion, April 9–12, 2018, Nice, France Michael Greenberg

read line parse expand evaluate

expand evaluate

expand evaluate

…

Figure 1: The shell REPL, with parsing in pink and execu-

tion in blue . Execution consists of expansion followed by
evaluation, but expansion can embed further executions us-
ing command substitutions.

Similarly, the fish shell replacement works well as an interactive

shell but is less popular for programming [8]. Shell-like libraries

seem to a do a good job for scripting, but less so for interactive

work (Section 4.3): a shell library for Python, Plumbum, ends up

relying on word expansion itself [9]; a shell library for Haskell,

Turtle, doesn’t quite work as an interactive shell [3].

My arguments are by no means exhaustive: others have studied

the shell (Section 5); we might assess how important word expan-

sion is in other ways, or we might make word expansion better

or less error prone without fundamentally changing its character

(Section 6).

The technical parts of the paper are, for the most part, a reca-

pitulation of the POSIX standard [10]. My arguments reflect my

own bias towards a semantic understanding of the shell. I use my

own experience as evidence; however, there are other good forms

of evidence: historical analysis of various other shells, user studies,

and experiments in shell design, to name a few.

I have written this paper in order to (a) make an argument about

word expansion’s role in supporting the POSIX shell’s interactivity,

(b) to encourage other researchers to think about how we might

better support the shell, and (c) to illuminate true nature of the

POSIX shell and the tensions in its design.

2 WHAT IS WORD EXPANSION?
The POSIX shell executes somewhat unconventionally (Figure 1).

Like other dynamically typed, interactive languages, the shell oper-

ates in a “read-eval-print loop”, or REPL. But the shell’s evaluation

is split into two phases: first, a phase of word expansion, followed
by a second phase of actually evaluating code. What’s more, word

expansion can itself trigger expansion and evaluation recursively.

Those who are very familiar with the shell may well skip the next

section and go directly to Section 3. Those who use the shell in a

less thoroughgoing way may benefit from the following high level

overview of its (commonly misunderstood) features.

Word expansion is specified in Section 2.6 of the POSIX IEEE Std

1003.1-2008 [10]. At a high level, word expansion is the process that

converts user input into fields, which will become, e.g., a command

and its arguments. There are seven stages of word expansion:

(1) tilde expansion, which replaces ~ with the current user’s

home directory and ~user with a given user’s home direc-

tory;

(2) parameter expansion, which replaces variable references like

$x with the value of the given variable, possibly applying

one of a number of formats, e.g., ${x=5} will either return
the value of x or, if x is unset, it will recursively expanding

the string 5 and assign the result (simply 5) to x;
(3) command substitution, which nests evaluation inside of ex-

pansion by running a given command, e.g. ‘cmd‘ or $(cmd)
will splice in cmd’s output via the recursive expansions and
evaluations in Figure 1;

(4) arithmetic expansion, which computes the result of an arith-

metic expression, e.g., $((x += 2)) will add 2 to the current
value of x (interpreted as a number) and return the string

representing the number two greater than x;
(5) field splitting, which breaks the expanded input string into

fields;

(6) pathname expansion, which uses the current working direc-

tory to expand special symbols like * and ?; and
(7) quote removal, which removes any double quotes that the

user used to control field splitting.

The first four stages are properly expansions on user input and are

run in a left-to-right fashion; the last three stages arrange for split-

ting the string into fields. It seems typical of shell implementations

to perform all seven stages in one go from left to right, generating

a linked list of fields.

For example, suppose we were to run the following command:

echo ${x=5} $((x+=1)) ${x}

There are three control codes subject to expansion:

• ${x=5}will expand via parameter expansion; if x is set, then
it will return the current value of x; if not, the string 5 will
be expanded (to itself), set as the value of x, and then it will

return the new value of x, viz., 5.
• $((x+=1)) will expand via arithmetic expansion, adding 1

to x’s value.
• ${x} will expand to x’s current value (or the empty string,

if x is unset.

In this example, expansion runs as follows if x is unset:

echo ${x=5} $((x+=1)) ${x}
echo 5 $((x+=1)) ${x} # x set to 5
echo 5 6 ${x} # x set to 6
echo 5 6 6

Field splitting will generate four fields: one for echo, one for 5, one
for the 6 that came out of arithmetic expansion, and one for the 6
that came out of the final parameter expansion.

Word expansion is subtle in terms of (a) the order of events, and

(b) the nature of field splitting.

2

Word Expansion Supports POSIX Shell Interactivity <Programming’18> Companion, April 9–12, 2018, Nice, France

For an example of the subtlety of the order of events, consider

the string $((1 $op 2)). Before arithmetic expansion can begin,

the string 1 $op 2 must be fully expanded so it can be parsed as

an arithmetic expression. If op is bound to a valid binary operator,

like +, then the fully expanded string 1 + 2 will parse and evaluate
to 3. If, however, the variable op is unset, then $op will expand

to the empty string, and the string 1 2 will fail to parse. (We’d

find a similar failure if op produced something other than operator,

like hello or 47.) The issue isn’t only with arithmetic substitution:

other forms of expansion have nested expansion in them. Using

command substitution, a word expansion can trigger multiple layers

of expansion and evaluation, e.g., $(echo ${x=$(echo 5)}) will
begin by trying to expand ${x=$(echo 5)}; if the variable x is

unset, it will then run a nested command substitution on echo 5,
after which it will update the value of x and run the outer command

substitution—the recursive expansion/evaluation shown in Figure 1.

For an example of field splitting being subtle, suppose x is bound
to the string a␣b␣c (where ␣ represents a space). By default, ${x}
would expand to three fields: one for a, one for b, and one for c. If
the user sets the IFS variable, the internal field separators can be

configured so that ${x} would expand as a single field, retaining

spaces. Understanding which and howmany fields will be expanded

can be challenging, and the defaults are particularly awkward for

filenames with spaces. For example, suppose we have a directory

with three files: one called file1, one called file2, and one, unfor-
tunately, called file1␣file2. If we set x to "file1␣file2" and

run rm ${x}, we might be in for a surprise: x expands to two

fields and the first two files are deleted! Putting the variable sub-

stitution in quotes solves the problem: rm "${x}" will delete only

"file1␣file2". That is, field splitting can be controlled at use sites
but not at definition sites.

2.1 Word expansion in evaluation
Expansion aside, the shell’s evaluation model is fairly conventional

for its control operators: sequence (...; ...), conditionals (if
...; then ...; else ...; fi) and while loops (while ...;
do ...; done) work as expected. The shell also supports some op-

erations for controlling processes, like short-circuiting conjunction

(... && ...) and disjunction (... || ...). Along with negation

(! ...), these logical operators use commands’ exit codes to de-

termine conditionals, noting that the notion that a command is

‘truthy’ when it yields an exit code of 0. Pipes set up file descriptors

from one process to another (... | ...). None of these command

forms make particular use of word expansion in their semantics.

Four shell forms directly use word expansion in their semantics:

redirections, simple commands, for loops, and case statements.

Redirections set up file descriptors for a single process (... >...,
etc.). The targets of redirections are generated by word expansion.

For example, echo hi >$f will:

(1) run word expansion on $f to find out which file should be

used—here, whatever the variable f holds, collapsing the list

of expanded fields to a string;

(2) create a new process with the standard out file descriptor

(file descriptor number 1) redirected to the resulting word

expansion; and

(3) run the echo command (which could either be an executable

on the system, e.g., /bin/echo, or a built-in command in the

shell).

Simple commands depend even more heavily on word expansion.

Simple commands have the shape of zero or more assignments

followed by zero or more arguments: VAR1=val1 VAR2=val2 ...
VARm=valm arg1 arg2 ... argn. Each val and arg is subject

to expansion, which is performed from left to right. (The variable

names VAR are statically known strings and neither an input nor

an output of expansion.) If there are no args, then the variables are

assigned globally in the shell environment. If there are any args,
then the variable assignments have a more restricted scope, and

the shell evaluates as follows:

(1) Every val is expanded, but the environment isn’t updated

yet.

(2) Every arg is expanded. The very first field is used to deter-

mine which command is being run, where each command

could be either (a) an executable somewhere on the system,

(b) a function call, or (c) a shell built-in.

(3) In the case of (a) and (b), each VARi is set to whatever vali
expands to when running the command or calling the func-

tion. In the case of (c), shell built-ins do not typically look

at the environment, but some special built-ins will keep the

updates to each VARi even after the command completes

(Section 2.14 [10]).

For loops and case statements use word expansion to determine

control flow. The loop for x in args; do ...; done begins

by expanding args; after splitting the expanded args into some

number of fields, the body of the loop is run with x bound to each

resulting field in turn.

Case statements case args in pat1) ... ;; pat2) ...;;
esac evaluate by expanding args, collapsing the split fields into a

single string, and attempting to match the resulting string against

each pattern, pat, in the given order. When a pattern matches
against the string, the commands in that branch are run and the

other branches are ignored. In this context, matching is a limited

form of regular expressions, where the star pattern * matches an

arbitrary span of characters and ? matches any single character.

The shell also permits alternation in patterns, as well as various

locale-defined character classes.

Only four command forms make particular use of word expan-

sion, but it still turns out that executing nearly any command will

require some number of word expansions: simple commands are

in some sense the “base case” of the recursive evaluation function.

Up to a first approximation, though, it’s more or less sound to

imagine the shell has a standard evaluation semantics. When field

splitting is involved, however, the shell lives up to its reputation

for unpredictability.

In the remainder of this paper, I argue that word expansion is a crit-

ical enabling feature for the POSIX shell. The shell is successful as

an interactive way of controlling a computer—and word expansion

supports that interactivity.

3

<Programming’18> Companion, April 9–12, 2018, Nice, France Michael Greenberg

3 WHY IS EXPANSION IMPORTANT?
Word expansion is a critical, enabling component of the POSIX

shell: first, the shell’s niche is running commands, and the program-

mer constructs commands to run as strings—precisely what word

expansion deals in; second, word expansion is a good default for

the variadic operations the shell invokes, which offer easier ways

to deal with collections of files than programmatic iteration. In

order to make the argument that expansion enables interactivity,

I’ll address these issues in turn.

3.1 The shell’s core abstractions
The POSIX shell is fundamentally about managing processes and

their file descriptors: commands create processes; redirections and

pipes arrange file descriptors; the various control primitives like

for, do, and user-defined functions serve to automate process man-

agement. The core process management tasks, however, are all

about strings: the strings used to specify a command and its argu-

ments to execve,1 the strings used to refer to filesystem locations,

the strings that are the contents of important files in UNIX, and the

strings that are the values of environment variables.

While the ultimate goal of the interactive shell is job control—

starting and stopping programs—the job control process is itself all

about strings. Languages like Perl, Python, and JavaScript all have

good support for string manipulation in the language and standard

library; these languages include some string manipulation features

that the shell lacks, and all three make do without word expansion.

Nevertheless, all three are unsuitable for interactive use as a shell

and are less suited for job control (but see Section 4 and Section 4.3

in particular).

3.2 The shell’s operators and operands
Two characteristics of the shell make word expansion particularly

useful: first, more things are operators than operands in the shell;

second, the POSIX shell’s operators tend to be variadic—commands

accept anywhere from zero or more (ls), one or more (rm), up to

two or more (mv and cp) arguments. These variadic commands

are particularly well suited to word expansion, which can easily

produce multiple arguments via, e.g., *.
How might I substantiate the claim that interactive use of the

shell tends to have multi-argument, variadic commands? There

hasn’t been much research on how the shell is used today. So far

as I can tell, all of the work examining the POSIX shell as a user

interface comes from nearly thirty years ago [5, 13, 19]. Both Kraut

et al.’s early analysis of UNIX shell usage and Hanson et al.’s later

extension of that analysis provide valuable insight into the design of

commands, though they seem to take a menu based system as a fore-

gone conclusion [5, 13]. Their studies are more than thirty years old,

track processes rather than actual shell commands, don’t account

for the POSIX shell as a language (pipes | are treated as commands

rather than command-formers), and may not reflect current usage.

Wixon and Bramhall [19] offer comparative counts of commands

in UNIX and VMS, but don’t keep track of how many arguments

1
The execve system call is how a command is run in the shell: given the path to an exe-

cutable, a list of arguments, and an environment, execve(cmd,args,env) replaces the
current executing process with the command cmd on arguments args in environment

env.

Figure 2: Three sessions of interactive work in the shell;
more than 75% of all commands take at least one argument.

these commands were given, whether or not word expansion was

meaningfully triggered, etc. Their numbers are more than thirty

years old, and may not reflect changes in interaction styles over

time. For example, nearly 15% of VMS commands were to open an

editor, when I almost never explicitly run such a command—instead

I run open, which calls the default OS handler for that item’s file

type, or I directly open it from a separate text editor window.

Absent other sources of information, I offer a brief analysis of

my own shell history. I analyzed three sessions of interactive work,

finding that the vast majority of shell commands take multiple

arguments (Figure 2) and variadic commands are common (9.9% of

all commands in my example sessions).

In the first session—programming a web application written in

Ruby/Sinatra—an overwhelmingmajority of commands take at least

one argument (81.9%), withmore than a quarter of commands taking

more than one argument (27.1%). Out of 500 commands, 38made use

of a variadic interface (7.6%). In the second session—writing LaTeX,

version control with git, and package manager configuration—80.9%

of commands take at least one argument, with 29.3% of commands

taking more than one. Out of 155 commands, 15 made use of a vari-

adic interface (9.7%). In the third session—programming in Haskell

and C, version control with git and subversion, some package and

build management, and homework grading—78.1% of commands

take at least one argument, with 26.7% of commands taking more

than one. Out of 500 commands, 62 made use of a variadic inter-

face (12.4%). Summarizing these results, more things in the shell

are operands than operators, and many operators take multiple

arguments.

Only my third sample session contained loops—several revisions

of a for loop for sending out emails about homework grades; I

found no other programmatic constructs, like if or while. In their

sample of more than 30K Debian package installation scripts, Jean-

nerod et al. find plenty of loops. In their setting, 59% of these for

loops are directly unrollable—that is, their loops were over constant

arguments and needn’t have made use of expansion at all (my loops

depended on the filesystem and were not unrollable) [12]. I attribute

this difference to the samples: mine are drawn from interactive use,

while theirs are from stylistically constrained, programmatic main-

tainer scripts for managing package installation.

4

Word Expansion Supports POSIX Shell Interactivity <Programming’18> Companion, April 9–12, 2018, Nice, France

Four of the most common commands used in a variadic way are

mv (to move files), cp (to copy files), rm (to remove files), and grep
(to search files). My first session had 65 uses of these commands

(13.0%), my second had 15 (9.75%), and my third also had 65 (15.0%).

Note that these counts are slightly different from above: here I

count every use of these common variadic functions, whether it

uses many arguments or not; above I count only those uses of any
command making actual use of a variadic interface.

In my sessions, 9.9% of commands took advantage of variadic

interfaces. So while variadic interfaces aren’t the primary form

of interaction, they are very much used and in a variety of tasks.

Variadic functions, on the other hand, are far from the norm in most

programming languages. Comparable file manipulation functions

take one (rm, grep) or two arguments (mv, cp). But with interactivity
in mind, variadic commands for file manipulation are ergonomic: it

is quite common to treat bundles of files together. Word expansion

dovetails with variadic commands: field splitting allows one to store

many filenames in one variable, or to use pathname expansion to

produce multiple files matching a pattern, as in *.hs referring to
all Haskell source files.

There is a critical weakness, however, in the way the shell splits

strings: the defaults use whitespace to split fields, so filenames

with spaces in them will be grossly mistreated. See Section 2 for an

example and Section 6 for further discussion.

3.3 Interactive, exploratory programming
I frequently use the shell to automate repetitive tasks: running

homework graders on students’ assignments, generating grade

emails, etc. Writing such scripts is fairly different from program-

ming in conventional languages, where I tend to write large chunks

of a program at a time along with its tests, checking on functionality

in large batches. In the shell, I always hesitate to actually run the

commands that manipulate the filesystem, for fear that something

could go awry. Instead, I tend to write a script with echo before each
command, printing out which commands would be run. Once I’ve

verified that those are the very commands I want to execute, then I

remove the echos and let the script actually run the commands.

One of the main reasons for the shell’s “print first, run later”

paradigm is the general lack of data structures. I’m not at all afraid

to add an item to, say, a list or map in my program, because data

structures are ephemeral. If my program goes wrong and the data

structure becomes corrupted, not much is lost—I can simply start

over. But there are really only two data structures in the shell:

strings (concomitant with word expansion) and the filesystem. I

am very wary of updating my filesystem, since it’s easy for a single

shell command to have widespread and irrevocable effect.

It’s possible that improved IDE tooling could make programming

languages more interactive—my practice of writing large chunks

may be more determined by the lack of powerful IDEs for my

languages of choice than anything else. Even so, having strings

as the primary data structure more or less forces an exploratory

or interactive approach to programming. The shell’s interactivity

comes, in part, from wariness of the shell itself.

4 MAKING DOWITHOUTWORD EXPANSION
I’ve argued that word expansion is essential to the shell’s core

abstractions (Section 3.1) and the shell’s operators and operands

(Section 3.2). We can see that word expansion is critical to interac-

tive shell use by looking at attempts to replace the shell, in particular

the academic efforts scsh [16] and Shill [15]. I focus particularly on

these shell scripting replacements (Section 4.1) to emphasize that

concrete syntax for commands matters and that variadic commands

are significantly more concise than programmatic iteration.

I also compare the shell to REPLs (Section 4.2) and libraries with

APIs meant to emulate the shell (Section 4.3), but in less detail as

I believe them to be further afield of my interest in supporting

interactive shell use.

4.1 Shell scripting replacements
Both scsh and Shill aim to replace the scripting portion of the shell.

Shill explicitly renounces any claim to interactivity:

Shill is not an interactive shell, but rather a language

that presents operating system abstractions to the pro-

grammer and is used primarily to launch programs.

While Shill doesn’t go so far to identify precisely what makes it

less suited for interactive use, scsh offers a list of features that they

conjecture would foster interactive use. Accordingly, I focus on

scsh, returning to Shill below.

It is important to note what scsh is not, as well as what

it is. Scsh, in the current release, is primarily designed

for the writing of shell scripts–programming. It is not

a very comfortable system for interactive command

use: the current release lacks job control, command-

line editing, a terse, convenient command syntax, and

it does not read in an initialisation file analogous to

.login or .profile. We hope to address all of these

issues in future releases; we even have designs for

several of these features; but the system as-released

does not currently provide these features.

The list of features doesn’t mention word expansion, yet I believe

that word expansion is in fact critical for the interactive feel. To see

why, let us consider a few common uses of expansion and compare

scsh with the POSIX shell.

As a first example, consider the scsh re-implementation of the

echo command:

(define (ekko args)

(for−each

(lambda (arg)

(display arg) (display " "))

args)

In a shell, a similar command can take advantage of the variadic

echo built-in, to write:

ekko() { echo "$@"; }

To avoid tautology, we could have instead used printf, but in either
definition, variadic commands and expansion give a simpler model

than manual, programmatic iteration.

If such a self-referential example is undermotivated, consider a

more realistic scenario: suppose we want to move all files ending

5

<Programming’18> Companion, April 9–12, 2018, Nice, France Michael Greenberg

in .c in the current directory to the directory code. The following
scsh snippet will suffice:

(for−each

(lambda (f)

(rename−file

f

(string−append "code/" f)))

(file−match "." #f "*.c"))

The scsh code is programmatic: we generate a list of files (file-match)
in the current directory (".") excluding hidden dotfiles (#f) that
end in .c, and then we iterate through them (for-each) renam-

ing each one to a carefully reassembled name in a subdirectory.

Compare with the shell snippet:

mv ∗.c code/

How is the shell so concise? Two factors contribute: the mv func-
tion is variadic, and the pathname expansion stage automatically

‘iterates’ through the matching files.

To be fair, scsh (and Scheme in general) has some of the features

one might want: the apply function allows for variadic interfaces,

and quasiquoting allows the progammer to easily mix code and data

in way not dissimilar to word expansion. One could write the bulk

file move above in maybe less idiomatic scsh as:

(run (mv ,@(file−match "." #f "*.c") code/))

Here ,@ is the ‘unquote-splicing’ operator in quasiquotation. Unquote-
splicing splices its argument into the quasiquoted list: after com-

puting the list of matching files, the resulting list is flattened into

the list given to run. Quasiquoting has a non-splicing insertion, as

well. For example, we could abstract out the target as follows:

(define (bulk−move−c tgt)

(run (mv ,@(file−match "." #f "*.c") ,tgt)))

Here , is the ‘unquote’ operator. It adds what follows as-is into

the list, without splicing. Since the run primitive expects a valid

command-line to run, the result of quasiquotation here had better

be a list of plain strings.

Quasiquoting gets us closer to something we might interactively

write, but we’re still a ways away from an interactive shell:

(1) The default ought to be running commands, while scsh re-

quires one to type run before every command.

(2) Having pathname expansion with * greatly simplifies enu-

merating files.

(3) Quasiquoting requires the user to explicitly decide between

unquote and unquote-splice at each inclusion.

(4) Word expansion supports concatenation automatically: if we

wanted to make sure tgt ends with a slash in bulk-move-c,
we must write ... ,(string-append tgt "/"), whereas
in the shell, we simply tack a / on the end.

In summary, scsh is unsuitable for interactive use not because it’s

missing .login, but because it lacks the concision the shell gains

by use of word expansion.

Finally, Shill’s focus is very much on its capability system. Shill

of course supports calling arbitrary executables:

exec(jpeginfo, ["jpeginfo","-i",file],

stdout = out, extras = [libc,libjpeg])

The first argument to exec is a reference to the executable to be run,
which is also a capability to actually execute it (here, jpeginfo—we
are not shown how this capability is obtained); this capability is not
a string. Next comes the actual command as a string, redirecting

the command’s output to a stream named out. Finally, the extras
indicate that capabilities to the C standard library and a JPEG ma-

nipulate library will be necessary to run the program. Shill is very

good at managing capabilities but is unsuited to interactive use.

I should be very clear: the programmatic features in scsh and

Shill are excellent, and I seek out such well-structured interfaces

when programming. My point is rather that there’s a dovetail effect

that makes the POSIX shell particularly good at interactive work:

on the one hand, we have standard POSIX utilities with variadic

interfaces; on the other hand, word expansion in the shell gives us

a lightweight, concise interface for specifying multiple arguments.

4.2 REPLs and interactivity
While a variety of languages offer REPLs for interactive exploration,

two classes of languages are good for both interactive use and

programming: scientific computing platforms, like Matlab and R;

and dynamic languages in the Lisp tradition, like Racket and Clojure.

They don’t use word expansion, yet they manage to be thoroughly

interactive. How?

Scientists use workbenches like Matlab and R for interactive/ex-

ploratory use, ranging from one-off commands to, say, generate a

graph all the way to longer workflows that are then transitioned to

more permanent scripts and programs. I suspect that the following

factors contribute: a restricted set of datatypes of interest (scalars,

vectors, matrices, and data frames); good defaults for visualization

(plots and graphs); and large operations bundled up so that a single

command includes a great deal of computation (e.g., BLAST, SVD,

PCA, and regression libraries). Some of the exploratory nature of

these workbenches may be come from their visualizations: it’s very

easy for a scientist to inspect partially constructed models. I see a

cognate in the shell programmer’s habit of echoing commands be-

fore actually running them. Some of the interactivity may also come

from training: if scientists are taught to use these workbenches to

explore, then the workbenches develop a reputation for being good

for interactivity and exploration whether or not they actually are.

Lisp-family languages like Racket and Clojure support a great

deal of interactivity: it’s quite common to iteratively add definitions

to a file of code during interactive work. That is, programming is a

sort of cycle of “explore, find and commit to a definition, explore

again, revise or find a new definition”. Such a cycle is qualitatively

different from shell programming, which is perhaps more about

processes (scripting a particular sequence of events) than definitions

(designing and manipulating a particular data structure). To put it

differently, these interactive sessions in Lisp-y languages are about

processes for new data structures, while shell scripts tend to deal

with only one data structure—the filesystem. Scsh is an example of

a Lisp-like language that is well and truly about manipulating the

filesystem, but it is substantially less interactive than the shell (see

Section 4, above).

6

Word Expansion Supports POSIX Shell Interactivity <Programming’18> Companion, April 9–12, 2018, Nice, France

I list these examples of REPLs—scientific workbenches, Lisp-like

languages—to make it clear that by no means does the shell have a

monopoly on interactive work. But each of these examples is either

narrow in scope (scientific workbenches) or not about manipulating

the filesystem (Lisp-like languages).

The top-level REPLmay be “hopeless”,
2
but I suspect that insights

might be gleaned for the shell from REPL-oriented languages—and

vice versa.

4.3 Shell-like libraries
The Plumbum library for Python and the turtle library for Haskell of-

fer ‘shell combinators’ [3, 9]. Programmers can reflect shell utilities

into language-level functions. Neither is really ideal for interactive

use, but both do a good job of embedding shell-scripting DSLs in a

more general programming language. I omit further consideration

of turtle, since it doesn’t aim to be interactive:

The turtle library focuses on being a "better Bash"

by providing a typed and light-weight shell scripting

experience embedded within the Haskell language.

The following examples are taken from the Plumbum documenta-

tion, and are meant to represent an interactive Python session with

Plumbum. First, overloaded operators allow for a shell-like syntax:

>>> # compose a shell-like pipe

>>> chain = ls["-l"] | grep[".py"]

>>> # expose the Plumbum representation

>>> print chain

C:\Program Files\Git\bin\ls.exe −l

| C:\Program Files\Git\bin\grep.exe .py

>>>

>>> chain() # run the pipe

'−rw−r−−r−− 1 sebulba Administ

0 Apr 27 11:54 setup.py\n'

Once utilities can be invoked like normal functions, one can use

built-in Python features like apply, *args, and **kw to support vari-
adic interfaces. The syntax is not quite as spare as that of the POSIX

shell, though it’s considerably more concise than standard Python

idioms for opening processes, like popen. Plumbum supports some

level of nesting of commands: one can invoke the reflected ssh
command with a Plumbum pipe itself; the following will connect to

somehost, then connect to anotherhost, and then find files that

end in .py:

>>> ssh["somehost",

ssh["anotherhost", ls | grep["\\.py"]]]

...

Plumbum’s abstractions ultimately fail for commands, though:

“command nesting works by shell-quoting (or shell-escaping) the

nested command” [9]. That is, Plumbum cannot avoid relying,

at some point, on the string-based, word-expansion approach of

the shell. Plumbum’s abstractions seem particularly successful for

paths: globbing is explicit, and paths are kept as objects, rather than

strings—doing so allows for much more graceful handling of lists of

paths than in the shell, where field splitting interacts poorly with

2https://gist.github.com/samth/3083053

spaces in filenames. Relatedly, the Sh library for Python is similar

to Plumbum (and inspired Plumbum itself), but aims even less than

Plumbum to be a shell replacement. Sh is instead a nicer way to

interact with processes in general [7].

Shell libraries like Plumbum and turtle help write scripts, but

don’t achieve the interactivity of the shell.

5 RELATEDWORK
Some popular shells are more (bash [6]) or less (fish [8]) POSIX

compliant, extending the POSIX shell with helpful features. For

example, bash extends word expansion. Two examples are brace

expansion—where a{b,c} expands to the two fields ab and ac—and
pattern substitution, where ${x/.c/.o/} expands to test.o when
x is test.c. These extensions are useful, but do nothing to address

issues with, e.g., filenames with spaces. Fish’s extensions are much

more extreme, and with an eye to avoiding errors: they replace the

command language with a more ‘modern’ syntax; some variables,

like PATH, can range over lists rather than strings, which solves

some issues with spaces; they use a different command substitution

syntax; they provide automatic shell completion based on parsing

manual pages and highlight syntax in the shell based on those

completions. While fish’s extensions are popular, the fish scripting

language does not seem to have the traction of the POSIX shell and

does nothing to address existing scripts.

My enthusiasm for the shell’s semantics in general and word

expansion in particular is by no means universal. The UNIX Hater’s

Handbook calls out word expansion in the shell as a particularly

dangerous feature ([1], p20); “[t]he shell may be a programming

language, but it isn’t a very precise one” ([1], p21).

Giger and Wilde [2] add yet another stage of expansion to the

shell, extending the * and ? from the POSIX standard’s pathname

expansion with XPath.

Jeannerod et al. [11] propose using the CoLiS language as a core

calculus for studying shell. Their evaluation of string expressions

amounts to something akin to word expansion, though their setting

is deliberately less complex than what the POSIX standard specifies.

Interactive programming seems to be a non-goal for them, since

their focus is on analyzing Debian “maintainer scripts” for packages,

rejecting programs outside a certain subset of the shell.

Mazurak and Zdancewic [14] describe an analysis for calculating

the number of fields that will come out of a given term. More such

analyses—perhaps with syntax highlighting à la fish—would surely

help identify potential scripting errors.

6 DISCUSSION
The foregoing qualitatively and theoretically examines how word

expansion is important for the shell, with my own experience as

the sole empirical source. I could instead quantitatively study how

the POSIX shell is used in a variety of settings: which features

are meaningfully employed by a variety of users when working in

the shell? Such a study would bring new forms of evidence to my

argument, would complement my approach, and would probably

offer other insights into the design of the POSIX shell. I can imagine

performing a study in the manner of Whiteside et al. [18]: compare

user performance in a variety of modes (the shell; Python or scsh;

Python with Plumbum) on the sort of task one would ordinarily

7

https://gist.github.com/samth/3083053

<Programming’18> Companion, April 9–12, 2018, Nice, France Michael Greenberg

perform interactively with the shell (say, The Command Line Mur-

ders [17]), breaking users up into groups based on past experience

and preference. I suspect that, in general, HCI/UI methods would

have interesting ways of phrasing and answering questions about

the importance of particular features of the POSIX shell.

I have argued that word expansion is an essential element in

the POSIX shell’s interactivity: the activities and core abstractions

of the shell demand extensive string manipulation; more things in

the shell are operands than operators, and the shell’s operators are

often variadic; attempts at replacing the shell that leave out word

expansion have failed to produce compellingly interactive shells.

Supposing I am correct, and word expansion is critical to the shell’s
interactivity: what can we do to fix the shell, which is undeniably

error prone? What features is it missing?

I suspect that concrete syntax is in fact critical, and some quan-

titative user-study-based approach could help discover whether or

not that is true. I conjecture that it’s possible to make small changes

to expansion that will (a) run most shell programs the same, but (b)

handle spaces in filenames more gracefully. The fish shell’s use of

lists seems like a good first step [8].

I am developing an executable, mechanized semantics for POSIX

shell expansion and evaluation; such a semantics will not only serve

as standardized, formalmodel of the POSIX shell standard, but it will

also guide the development of tools for existing shells and semantics

for new ones. For example, my executable semantics could be used

to test shell programs in a revised expansion semantics that better

supports spaces.

6.1 Conclusion
Word expansion is a critical piece of the shell, dovetailing with

the POSIX utilities to offer a powerful, interactive user interface.

The concise syntax for running commands and the commands’

variadic interfaces allow programmers to work interactively in the

shell. In particular, variadic interfaces and word expansion allow for

particularly easy expressions of iterative behavior, e.g., commands

like mv src/*.o build/ which would require a loop in more

programmatic settings.

Nevertheless, the shell is not without its problems. Is there some

design adjacent to the POSIX shell as it exists that (a) works for

many existing scripts, (b) doesn’t change the character of the shell

so much as to hurt interactivity, but (c) avoids the unpredictability

that comes with field splitting?

ACKNOWLEDGMENTS
Comments from Austin Blatt and the anonymous reviewers signifi-

cantly improved the presentation; the workshop itself, of course,

provided more valuable feedback.

REFERENCES
[1] Simson Garfinkel, Daniel Weise (Ed.), and Steven Strassman (Ed.). 1994. The

UNIX Hater’s Handbook. IDG Books Worldwide, Inc., San Mateo, CA, USA.

[2] Kaspar Giger and Erik Wilde. 2006. XPath Filename Expansion in a Unix Shell. In

Proceedings of the 15th International Conference on World Wide Web (WWW ’06).
ACM, New York, NY, USA, 863–864. https://doi.org/10.1145/1135777.1135916

[3] Gabriel Gonzalez. 2018. Turtle: shell programming, Haskell style. (07 Feb. 2018).

https://github.com/Gabriel439/Haskell-Turtle-Library
[4] Michael Greenberg. 2017. Understanding the POSIX Shell as a Programming

Language. (2017). OBT.

[5] Stephen José Hanson, Robert E. Kraut, and James M. Farber. 1984. Interface

Design and Multivariate Analysis of UNIX Command Use. ACM Trans. Inf. Syst.
2, 1 (Jan. 1984), 42–57. https://doi.org/10.1145/357417.357421

[6] http://savannah.gnu.org/project/memberlist.php?group=bash. 2018. GNU Bash:

the Bourne Again SHell. (05 Feb. 2018). https://www.gnu.org/software/bash/
[7] https://github.com/amoffat/sh/graphs/contributors. 2018. Sh: Python process

launching. (31 Jan. 2018). http://amoffat.github.io/sh/
[8] https://github.com/fish-shell/fish shell/graphs/contributors. 2018. Fish: the

friendly interactive shell. (19 Jan. 2018). https://fishshell.com/
[9] https://github.com/tomerfiliba/plumbum/graphs/contributors. 2018. Plumbum:

shell combinators. (31 Jan. 2018). http://plumbum.readthedocs.io/en/latest/
[10] IEEE and The Open Group. 2016. The Open Group Base Specifications Issue 7 (IEEE

Std 1003.1-2008). IEEE and The Open Group.

[11] Nicolas Jeannerod, Claude Marché, and Ralf Treinen. 2017. A Formally Verified

Interpreter for a Shell-Like Programming Language. In Verified Software. Theories,
Tools, and Experiments - 9th International Conference, VSTTE 2017, Heidelberg,
Germany, July 22-23, 2017, Revised Selected Papers. 1–18. https://doi.org/10.1007/
978-3-319-72308-2_1

[12] Nicolas Jeannerod, Yann Régis-Gianas, and Ralf Treinen. 2017. Having Fun With
31.521 Shell Scripts. Technical Report hal-01513750.

[13] Robert E. Kraut, Stephen J. Hanson, and James M. Farber. 1983. Command

Use and Interface Design. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI ’83). ACM, New York, NY, USA, 120–124.

https://doi.org/10.1145/800045.801594
[14] Karl Mazurak and Steve Zdancewic. 2007. ABASH: Finding Bugs in Bash Scripts.

In PLAS. 105–114. https://doi.org/10.1145/1255329.1255347
[15] Scott Moore, Christos Dimoulas, Dan King, and Stephen Chong. 2014. Shill:

A Secure Shell Scripting Language. In 11th USENIX Symposium on Operating
Systems Design and Implementation. USENIX. To appear.

[16] Olin Shivers. 2006. SCSH manual 0.6.7. (2006). https://scsh.net/docu/html/man.
html

[17] Noah Veltman. 2018. The Command Line Murders. (05 Feb. 2018). https:
//github.com/veltman/clmystery

[18] John Whiteside, Sandra Jones, Paula S Levy, and Dennis Wixon. 1985. User

performance with command, menu, and iconic interfaces. ACM SIGCHI Bulletin
16, 4 (1985), 185–191.

[19] Dennis Wixon and Mark Bramhall. 1985. How Operating Systems are Used:

A Comparison of VMS and UNIX. In Proceedings of the Human Factors Society
Annual Meeting, Vol. 29. SAGE Publications Sage CA: Los Angeles, CA, 245–249.

8

https://doi.org/10.1145/1135777.1135916
https://github.com/Gabriel439/Haskell-Turtle-Library
https://doi.org/10.1145/357417.357421
https://www.gnu.org/software/bash/
http://amoffat.github.io/sh/
https://fishshell.com/
http://plumbum.readthedocs.io/en/latest/
https://doi.org/10.1007/978-3-319-72308-2_1
https://doi.org/10.1007/978-3-319-72308-2_1
https://doi.org/10.1145/800045.801594
https://doi.org/10.1145/1255329.1255347
https://scsh.net/docu/html/man.html
https://scsh.net/docu/html/man.html
https://github.com/veltman/clmystery
https://github.com/veltman/clmystery

	Abstract
	1 Introduction
	2 What is word expansion?
	2.1 Word expansion in evaluation

	3 Why is expansion important?
	3.1 The shell's core abstractions
	3.2 The shell's operators and operands
	3.3 Interactive, exploratory programming

	4 Making do without word expansion
	4.1 Shell scripting replacements
	4.2 REPLs and interactivity
	4.3 Shell-like libraries

	5 Related work
	6 Discussion
	6.1 Conclusion

	References

