
DRAFT—do not distribute

Space-Efficient Manifest Contracts

Anonymous

Abstract
The standard algorithm for higher-order contract checking can lead
to unbounded space consumption and can destroy tail recursion,
altering a program’s asymptotic space complexity. While space
efficiency for gradual types—contracts mediating untyped and
typed code—is well studied, sound space efficiency for manifest
contracts—contracts that check stronger properties than simple
types, e.g., “is a natural” instead of “is an integer”—remains an
open problem.

We show how to achieve sound space efficiency for manifest
contracts with strong predicate contracts. We define a framework
for space efficiency, traversing the design space with three different
space-efficient manifest calculi. Along the way, we examine the di-
verse correctness criteria for contract semantics; we conclude with
a language whose contracts enjoy (galactically) bounded, sound
space consumption—they are observationally equivalent to the
standard, space-inefficient semantics.

1. Introduction
Types are an extremely successful form of lightweight specifica-
tion: programmers can state their intent—e.g., plus is a function
that takes two numbers and returns another number—and then type
checkers can ensure that a program conforms to the programmers
intent. Types can only go so far though: division is, like addition,
a function that takes two numbers and returns another number...
so long as the second number isn’t zero. Conventional type sys-
tems do a good job of stopping many kinds of errors, but most
type systems cannot protect partial operations like division and
array indexing. Advanced techniques—singleton and dependent
types, for example—can cover many of these cases, allowing pro-
grammers to use types like “non-zero number” or “index within
bounds” to specify the domains on which partial operations are
safe. Such techniques are demanding: they can be difficult to un-
derstand, they force certain programming idioms, and they place
heavy constraints on the programming language, requiring purity
or even strong normalization.

Contracts are a popular compromise: programmers write type-
like contracts of the form Int→ {x :Int | x 6= 0} → Int, where the
predicates x 6= 0 are written in code. These type-like specifications
can then be checked at runtime [6]. Checking a predicate contract
(also called a refinement type, though that term is overloaded) like
{x :Int | x 6= 0} on a number n involves running the predicate
x 6= 0 with n for x . Checking a function f against the contract

[Copyright notice will appear here once ’preprint’ option is removed.]

T1→T2 is deferred: we record the contract on f by wrapping it
with a function proxy. Calling this function proxy with an argument
e , we check the domain contract T1 on e , run the original function
f on the result, and then check that result against the codomain
contract T2. Models of contract calculi have taken two forms: latent
and manifest [11], and both suffer from space inefficiency. We take
the manifest approach here, which means checking contracts with
casts, written 〈T1⇒T2〉l e . Casts from one predicate contract to
another, 〈{x :B | e1}⇒{x :B | e2}〉l, take a constant k and check
to see that e2[k/x] −→∗ true. It’s hard to know what to do with
function casts at runtime: in 〈T11→T12⇒T21→T22〉l e , we know
that e is a T11→T12, but what does that tell us about treating e
as a T21→T22? Findler and Felleisen’s insight is that we must
defer checking, waiting until the cast value e gets an argument [6].
These deferred checks are recorded on the value by means of a
function proxy, i.e., 〈T11→T12⇒T21→T22〉l e is a value when e
is a value; applying a function proxy unwraps it contravariantly:

(〈T11→T12⇒T21→T22〉l e1) e2 −→
〈T12⇒T22〉l (e1 (〈T21⇒T11〉l e2))

Findler and Felleisen neatly designed a system for contract check-
ing in a higher-order world, but there is a problem: casts are space
inefficient [14].

Contract checking’s space inefficiency can be summed up as
follows: function proxies break tail calls. Calls to an unproxied
function from a tail position can be optimized to not allocate stack
frames. Proxied functions, however, will unwrap to have codomain
contracts—breaking tail calls. We discuss other sources of space
inefficiency below, but breaking tail calls is the most severe. Con-
sider factorial written in accumulator passing style. The developer
may believe that the following can be compiled to use tail calls:

fact : {x :Int | x ≥ 0}→{x :Int | x ≥ 0}→{x :Int | x ≥ 0}
= λx :{x :Int | true}. λx :{x :Int | true}.

if x = 0 then acc else fact (x − 1) (x ∗ acc)

A cast insertion algorithm [26] might produce the following non-
tail recursive function:

fact =
〈{x :Int | true}→{x :Int | true}→{x :Int | true}⇒
{x :Int | x ≥ 0}→{x :Int | x ≥ 0}→{x :Int | x ≥ 0}〉lfact
λx :{x :Int | true}. λx :{x :Int | true}.

if x = 0 then acc else
(〈{x :Int | x ≥ 0}⇒{x :Int | true}〉lfact (fact . . .))

Tail-call optimization is essential for usable functional languages—
we believe that space inefficiency has been one of two significant
obstacles for pervasive use of higher-order contract checking. (The
other is state, which we do not treat here.)

In this work, we show how to achieve semantics-preserving
space efficiency for non-dependent contract checking. Our ap-
proach is inspired by work on gradual typing [24], a form of
(manifest) contracts designed to mediate dynamic and simple
typing—that is, gradual types (a) allows the dynamic type, and

DRAFT 1 2014/7/14

(b) restricts the predicates in contracts to checks on type tags.
Herman et al. [14] developed the first space-efficient gradually
typed system, using Henglein’s coercions [13]; Siek and Wadler
[25] devised a related system supporting blame. The essence of
the solution is to allow casts to merge: given two adjacent casts
〈T2⇒T3〉l2 (〈T1⇒T2〉l1 e), we must somehow combine them
into a single cast. Siek and Wadler annotate their casts with an in-
termediate type representing the greatest lower bound of the types
encountered. Such a trick doesn’t work in our more general setting:
simple types plus dynamic form a straightforward lattice using
type precision as the ordering, but it’s less clear what to do when
we have arbitrary predicate contracts.

We offer three modes of space-efficiency; all of the modes
are defined in a single calculus which we call λH. Each mode
enjoys varying levels of soundness with respect to the standard,
space-inefficient semantics of classic λH. We sketch here the mode-
indexed rules for combining annotations on casts—the key rules for
space efficiency.

The forgetful mode uses empty annotations, •; we combine two
casts by dropping intermediate types:

〈T2
•⇒T3〉l2 (〈T1

•⇒T2〉l1 e) −→F 〈T1
•⇒T3〉l2 e

Surprisingly, this evaluation rule is type safe and somewhat sound
with respect to the classic mode, as discovered by Greenberg [10]:
if classic λH produces a value, so does forgetful λH.

The heedful mode uses sets of types as its annotations, making
sure to save the intermediate type:

〈T2
S2⇒T3〉l2 (〈T1

S1⇒T2〉l1 e) −→H 〈T1
S1∪S2∪{T2}⇒ T3〉l2 e

In Siek and Wadler’s terms, we use the powerset lattice for annota-
tions, while pointed types. Heedful and classic λH are almost iden-
tical, except sometimes they blame different labels.

Finally, the eidetic mode annotates casts with refinement lists
and function coercions—a new form of coercion inspired by Green-
berg [10]. The coercions keep track of checking so well that the
type indices and blame labels on casts are unnecessary:

〈T2
c2⇒T3〉• (〈T1

c1⇒T2〉• e) −→E 〈T1
c1Bc2⇒ T3〉• e

These coercions form a skew lattice: refinement lists have ordering
constraints that break commutativity. Eidetic λH is space efficient
and observationally equivalent to the classic mode.

Since eidetic and classic λH behave the same, why bother with
forgetful and heedful? First and foremost, the calculi offer insights
into the semantics of contracts. Second, we offer them as alternative
points in the design space. Finally and perhaps cynically, they are
strawmen—warm up exercises for eidetic λH.

We claim two contributions:

1. Eidetic λH is the first manifest contract calculus that is both
sound and space efficient with respect to the classic semantics—
a result contrary to Greenberg [10], who conjectured that such
a result is impossible. We believe that space efficiency is a criti-
cal step towards the implementation of practical languages with
manifest contracts.

2. A framework for defining space efficiency in manifest contract
systems, with an exploration of the design space. We identify
common structures and methods in the operational semantics as
well as in the proofs of type soundness, soundness with regard
to the classic framework, and space bounds.

We do not prove a blame theorem [27], since we lack the clear
separation of dynamic and static typing found in gradual typing.
We conjecture that such a theorem could be proved for classic and
eidetic λH—but perhaps not for forgetful and heedful λH, which
skip checks and change blame labels. Our model has two limits

worth mentioning: we do not handle dependency, a common and
powerful feature in manifest systems; and, our bounds for space
efficiency are galactic—they establish that contracts consume con-
stant space, but do nothing to reduce that constant [18]. Our con-
tribution is showing that sound space efficiency is possible where
it was believed to be impossible [10]; we leave evidence that it is
practicable for future work. Our proofs are available in the non-
blind supplementary material, Appendices A–C.

Readers who are very familiar with this topic can read Fig-
ures 1, 2, and 3 and then skip directly to Section 3.5. Readers who
understand the space inefficiency of contracts but not manifest con-
tracts can skip Section 2 and proceed to Section 3.

2. Function proxies
Space inefficient contract checking breaks tail recursion—a show-
stopping problem for realistic implementations of pervasive con-
tract use. PLT Racket’s contract system [21], the most widely used
higher-order contract system, takes a “macro” approach to con-
tracts: contracts typically appear only on module interfaces, and
aren’t checked within a module. Their approach comes partly out
of a philosophy of breaking invariants inside modules but not out
of them, but also partly out of a need to retain tail recursion within
modules. Space inefficiency has shaped the way their contract sys-
tem has developed. They do not use our “micro” approach, wherein
annotations and casts permeate the code.

Tail recursion aside, there is another important source of space
inefficiency: the unbounded number of function proxies. Hierar-
chies of libraries are a typical example: consider a list library and a
set library built using increasingly sorted lists. We might have:

null : α List→{x :Bool | true} = ...
head : {x :α List | not (null x)}→α = ...

empty : α Set→{x :Bool | true} = null
min : {x :α Set | not (empty x)}→α = head

Our code reuse comes with a price: even though the precondition
on min is effectively the same as that on head, we must have two
function proxies, and the non-emptiness of the list representing
the set is checked twice: first by checking empty, and again by
checking null (which is the same function). Blame systems like
those in PLT Racket encourage modules to redeclare contracts to
avoid being blamed—which can result in redundant checking.

Or consider a library of drawing primitives based around
painters, functions of type Canvas→Canvas. An underlying graph-
ics library offers basic functions for manipulating canvases and
functions over canvases, e.g., primFlipH is a painter transformer—
of type (Canvas→Canvas)→(Canvas→Canvas)—that flips the
generated images horizontally. A wrapper library may add de-
rived functions while re-exporting the underlying functions with
refinement types specifying a square canvas dimensions, where
SquareCanvas = {x :Canvas | width(x) = height(x)}:

flipH p = 〈Canvas→Canvas⇒
SquareCanvas→SquareCanvas〉l

(primFlipH
(〈SquareCanvas→SquareCanvas⇒

Canvas→Canvas〉l p))

The wrapper library only accepts painters with appropriately re-
fined types, but must strip away these refinements before calling the
underlying implementation—which demands Canvas→Canvas
painters. The wrapper library then has to cast these modified func-

DRAFT 2 2014/7/14

Modes
m ::= C classic λH; Section 3

| F forgetful λH; Section 4
| H heedful λH; Section 5
| E eidetic λH; Section 6

Types
B ::= Bool | . . .
T ::= {x :B | e} | T1→T2

Terms
e ::= x | k | λx :T . e | e1 e2 | op(e1, . . . , en) |

〈T1
a⇒T2〉l e | 〈{x :B | e1}, e2, k〉l | ⇑l |

〈{x :B | e1}, s, r , k , e〉•
Annotations: type set, coercions, and refinement lists
a ::= • | S | c
S ::= ∅ | {T1, ...,Tn}
c ::= r | c1 7→ c2
r ::= nil | {x :B | e}l , r

Statuses
s ::= X | ?

Locations
l ::= • | l1 | ...

Figure 1. Syntax of λH

tions back to the refined types. Calling flipH (flipH p) yields:

〈Canvas→Canvas⇒SquareCanvas→SquareCanvas〉l
(primFlipH

(〈SquareCanvas→SquareCanvas⇒Canvas→Canvas〉l
(〈Canvas→Canvas⇒SquareCanvas→SquareCanvas〉l

(primFlipH
(〈SquareCanvas→SquareCanvas⇒

Canvas→Canvas〉l p)))))

That is, we first cast p to a plain painter and return a new painter p′.
We then cast p′ into and then immediately out of the refined type,
before continuing on to flip p′. All the while, we are accumulating
many function proxies beyond the wrapping that the underlying im-
plementation of primFlipH is doing. A space-efficient scheme for
manifest contracts bounds the number of function proxies that can
accumulate. Redundant wrapping can become quite extreme, espe-
cially for continuation-passing programs. Function proxies are the
essential problem: nothing bounds their accumulation. Unfolding
unboundedly many function proxies creates stacks of unboundedly
many checks—which breaks tail calls.

3. Classic manifest contracts
The standard manifest contract calculus, λH, is originally due to
Flanagan [8]. We give the syntax for the non-dependent fragment
in Figure 1. We have highlighted in yellow the four syntactic forms
relevant to contract checking. This paper paper discusses four
modes of λH: classic λH, mode C; forgetful λH, mode F; heed-
ful λH, mode H; and eidetic λH, mode E. Each of these languages
uses the syntax of Figure 1, while the typing rules and operational
semantics are indexed by the mode m . We summarize how each of
these modes differ in Section 3.2—but first we (laconically) explain
the syntax and the interesting bits of the operational semantics.

The metavariable B is used for base types, of which at least
Bool must be present. There are two kinds of types. First, predicate
contracts {x :B | e}, also called refinements of base types or just
refinement types, denotes constants k of base type B such that
e[k/x] holds—that is, such that e[k/x] −→∗m true for any mode
m . Function types T1→T2 are standard.

The first distinguishing feature of λH’s terms is the cast, written
〈T1

a⇒T2〉l e . Here e is term of type T1; the cast checks whether
e can be treated as a T2—if e doesn’t cut it, the cast will use
its label l to raise the uncatchable exception ⇑l , read “blame l”.
Our casts also have annotations a . Classic and forgetful λH don’t
need annotations—we write •. Heedful λH uses type sets S to track
space-efficiently pending checks. Eidetic λH uses coercions c.

The three remaining forms—active checks, blame, and coercion
stacks—only occur as the program evaluates. Casts between refine-
ment types are checked by active checks 〈{x :B | e1}, e2, k〉l . The
first term is the type being checked—necessary for the typing rule.
The second term is the current status of the check; it is in invari-
ant that e1[k/x] −→∗m e2. The final term is the constant being
checked, which is returned wholesale if the check succeeds. When
checks fail, the program raises blame, an uncatchable exception
written ⇑l . A coercion stack 〈{x :B | e1}, s, r , k , e〉• represents
the state of checking a coercion; we only use it in eidetic λH, so we
postpone discussing it until Section 6.

3.1 Core operational semantics
Our mode-indexed operational semantics for our manifest calculi
comprise three relations: valm e identifies terms that are values
in mode m (or m-values), resultm e identifies m-results, and
e1 −→m e2 is the small-step reduction relation for mode m .
Figure 2 defines the core rules. The rules for classic λH (m = C)
are in salmon; the shared space-efficient rules are in periwinkle. To
save space, we pass over standard rules.

Each mode defines its own value rule for function proxies,
V PROXYm . The classic rule, V PROXYC, says that a function
proxy 〈T11→T12

•⇒T21→T22〉l e is a C-value when e is a C-
value. That is, function proxies can wrap lambda abstractions and
other function proxies alike. Other modes only allow lambda ab-
stractions to be proxied. All of the space-efficient calculi take our
approach, where a function cast applied to a value is a value; some
space inefficient ones do, too [6, 11, 12]. In some formulations of
λH in the literature, function proxies are implemented by introduc-
ing a new lambda as a wrapper à la Findler and Felleisen’s wrap
operator [2, 6, 8, 24]. Such an η-expansion semantics is conve-
nient, since then applications only ever reduce by β-reduction. But
it wouldn’t suit our purposes at all: space efficiency demands that
we combine function proxies. While we can imagine a third se-
mantics that looks into closures rather than having explicit function
proxies, we decline to gaze long into the abyss of lambda abstrac-
tions, lest they also gaze back into us.

The reduction rule for operations (E OP) defers to operations’
denotations, [[op]]; since these may be partial (e.g., division), we
assign types to operations that guarantee totality (see Section 3.3).
That is, partial operations are a potential source of stuckness, and
the types assigned to operations must guarantee the absence of
stuckness. Robin Milner famously said that “well typed expressions
don’t go wrong” [19]; his programs could go wrong by (a) applying
a boolean like a function or (b) conditioning on a function like
a boolean. Systems with more base types can go wrong in more
ways, some of which are hard to capture in standard type systems.
Contracts allow us to bridge that gap. Letting operations get stuck is
a philosophical stance—contracts expand the notion of “wrong”—
that supports our forgetful semantics (Section 4).

E UNWRAP applies function proxies to values, contravariantly
in the domain and covariantly in the codomain. We also split up
each cast’s annotation, using dom(a) and cod(a)—each mode is
discussed in its respective section. The E CHECK* rules manage
active checks in the conventional way; heedful and eidetic use
slightly different forms, described in their respective sections.

Since space bounds rely not only on limiting the number of
function proxies but also accumulation of casts on the stack, the

DRAFT 3 2014/7/14

Values and results valm e resultm e

valm k
V CONST

valm λx :T . e
V ABS

valC e

valC 〈T11→T12
•⇒T21→T22〉l e

V PROXYC valm e

resultm e
R VAL

resultm ⇑l
R BLAME

Shared operational semantics e1 −→m e2

valm e2

(λx :T . e12) e2 −→m e12[e2/x]
E BETA

valm e1 ... valm en

op(e1, ... , en) −→m [[op]] (e1, ... , en)
E OP

valm 〈T11→T12
a⇒T21→T22〉l e1 valm e2

(〈T11→T12
a⇒T21→T22〉l e1) e2 −→m 〈T12

cod(a)⇒ T22〉l (e1 (〈T21
dom(a)⇒ T11〉l e2))

E UNWRAP

dom(•) = •
dom(S) =

⋃
T∈S dom(T)

dom(c1 7→ c2) = c1

cod(•) = •
cod(S) =

⋃
T∈S cod(T)

cod(c1 7→ c2) = c2

m ∈ {C,F}

〈{x :B | e1}
•⇒{x :B | e2}〉l k −→m 〈{x :B | e2}, e2[k/x], k〉l

E CHECKNONE

〈{x :B | e}, true, k〉l −→m k
E CHECKOK

〈{x :B | e}, false, k〉l −→m ⇑l
E CHECKFAIL

e1 −→m e′1
e1 e2 −→m e′1 e2

E APPL
valm e1 e2 −→m e′2
e1 e2 −→m e1 e′2

E APPR

valm e1 ... valm ei−1 ei −→m e′i
op(e1, . . . , ei−1 , ei , . . . , en) −→m op(e1, . . . , ei−1 , e′i , . . . , en)

E OPINNER

e −→C e′

〈T1
•⇒T2〉l e −→C 〈T1

•⇒T2〉l e′
E CASTINNERC e2 −→m e′2

〈{x :B | e1}, e2, k〉l −→m 〈{x :B | e1}, e′2, k〉l
E CHECKINNER

m 6= C e2 −→m e′2 e2 6= 〈T1
a′
⇒T2〉l

′
e′′2

〈T2
a⇒T3〉l e2 −→m 〈T2

a⇒T3〉l e′2
E CASTINNER

a3 = mergem (T1, a1,T2, a2,T3)

〈T2
a2⇒T3〉l (〈T1

a1⇒T2〉l′ e2) −→m 〈T1
a3⇒T3〉l e2

E CASTMERGE

⇑l e2 −→m ⇑l
E APPRAISEL

valm e1

e1 ⇑l −→m ⇑l
E APPRAISER

〈T1
S⇒T2〉l ⇑l ′ −→m ⇑l ′

E CASTRAISE

valm e1 ... valm ei−1

op(e1, . . . , ei−1 ,⇑l , . . . , en) −→m ⇑l
E OPRAISE

〈{x :B | e},⇑l , k〉l′ −→m ⇑l
E CHECKRAISE

Figure 2. Core operational semantics of λH; classic λH rules are salmon; space-efficient rules are periwinkle

core semantics doesn’t include a cast congruence rule. The con-
gruence rule for casts in classic λH, E CASTINNERC, allows for
free use of congruence. In the space-efficient calculi, the use of
congruence is instead limited by the rules E CASTINNER and
E CASTMERGE. Cast arguments only take congruent steps when
they aren’t casts themselves. A cast applied to another cast merges,
using the merge function. Each space-efficient calculus uses a dif-
ferent annotation scheme, so each one has a different merge func-
tion. We deliberately leave merge undefined sometimes—heedful
and eidetic λH must control when E CASTMERGE can apply.
Note that we don’t need to specify m 6= C in E CASTMERGE—
we just don’t define a merge operator for classic λH. We have
E CASTMERGE arbitrarily retain the label of the outer cast. No
choice is “right” here—we discuss this issue further in Section 5.

3.2 Cast merges by example
Each mode’s section explains its semantics in detail, but we can
summarize the cast merging rules here by example. Consider the

following term:

e = 〈{x :Int | x mod 2 = 0} •⇒{x :Int | x 6= 0}〉l3
(〈{x :Int | x ≥ 0} •⇒{x :Int | x mod 2 = 0}〉l2

(〈{x :Int | true} •⇒{x :Int | x ≥ 0}〉l1 −1))

Here e runs three checks on integer −1: first for non-negativity
(blaming l1 on failure), then for evenness (blaming l2 on failure),
and then for non-zeroness (blaming l3 on failure). Classic and
eidetic λH both blame l1; heedful λH also raises blame, though it
blames a different label, l3; forgetful λH actually accepts the value,
returning−1. We discuss the operational rules for modes other than
C in detail in each mode’s section; for now, we repeat the derived
rules for merging casts from Section 1.

Classic λH evaluates the casts step-by-step: first it checks
whether −1 is positive, which fails, so e −→∗C ⇑l1. Forgetful
λH doesn’t use annotations at all—it just forgets the intermediate
casts, effectively using the following rule:

〈T2
•⇒T3〉l2 (〈T1

•⇒T2〉l1 e) −→F 〈T1
•⇒T3〉l2 e

DRAFT 4 2014/7/14

It never checks for non-negativity or evenness, skipping straight to
the check that −1 is non-zero. Heedful λH works by annotating
casts with a set of intermediate types, effectively using the rule:

〈T2
S2⇒T3〉l2 (〈T1

S1⇒T2〉l1 e) −→H 〈T1
S1∪S2∪{T2}⇒ T3〉l2 e

Every type in a type set needs to be checked, but the order is
essentially nondeterministic: heedful λH checks that −1 is non-
negative and even in some order. Whichever one is checked first
fails; both cases raise ⇑l3. Finally, eidetic λH uses coercions as
its annotations; coercions c are detailed checking plans for running
checks in the same order as classic λH while skipping redundant
checks. As we will see in Section 6, eidetic λH generates coercions
and then drops blame labels, giving us the rule:

〈T2
c2⇒T3〉• (〈T1

c1⇒T2〉• e) −→E 〈T1
c1Bc2⇒ T3〉• e

There are no redundant checks in the example term e , so eidetic λH
does exactly the same checking as classic, finding e −→∗E ⇑l1.

3.3 Type system
All three modes share a type system, given in Figure 3. All judg-
ments are universal and simply thread the mode through—except
for annotation well formedness `m a ‖ T1 ⇒ T2, which is mode
specific, and a single eidetic-specific rule given in Figure 8.

Context well formedness is entirely straightforward; type well
formedness requires some care to get base types off the ground.
Type compatibility ` T1 ‖ T2 identifies types which can be
cast to each other: the types must have the same “skeleton”. It is
reasonable to try to cast a non-zero integer {x :Int | x 6= 0} to a
positive integer {x :Int | x > 0}, but it is senseless to cast it to a
boolean {x :Bool | true} or to a function type T1→T2. Every cast
must be between compatible types; at their core, λH programs are
well typed simply typed lambda calculus programs.

Our family of calculi use different annotations. All source pro-
grams (defined below) begin without annotations—we write the
empty annotation •. The universal annotation well formedness rule
just defers to type compatibility (A NONE); it is an invariant that
`m a ‖ T1 ⇒ T2 implies ` T1 ‖ T2.

A constant k can be typed by T CONST at any type {x :B | e} in
mode m if: (a) k is a B , i.e., ty(k) = B ; (b) the type in question is
well formed in m; and (c), if e[k/x] −→∗m true. As an immediate
consequence, we can derive the following rule typing constants at
their raw type, since true −→∗m true in all modes and raw types
are well formed in all modes (WF BASE):

`m Γ ty(k) = B

Γ `m k : {x :B | true}
This approach to typing constants in a manifest calculus is novel:
it offers a great deal of latitude with typing, while avoiding the
subtyping of some formulations [8, 11, 16, 17] and the extra rule of
others [2]. We assume that ty(k) = Bool iff k ∈ {true, false}.

We require in T OP that ty(op) only produces well formed first-
order types, i.e., types of the form `m {x :B1 | e1} → ... →
{x :Bn | en}. We require that the type is consistent with the opera-
tion’s denotation: [[op]] (k1, ... , kn) is defined iff ei [ki/x] −→∗m
true for all m . For this evaluation to hold for every system we
consider, the types assigned to operations can’t involve casts that
both (a) stack and (b) can fail—because forgetful λH may skip
them, leading to different typings. We believe this is not so strin-
gent a requirement: the types for operations ought to be simple, e.g.
ty(div) = {x :Real | true}→{y :Real | y 6= 0}→{z :Real | true},
and stacked casts only arise in stack-free terms due to function
proxies. In general, it is interesting to ask what refinement types
to assign to constants, as careless assignments can lead to circular
checking (e.g., if division has a codomain cast checking its work
with multiplication and vice versa).

The typing rule for casts, T CAST, relies on the annotation well
formedness rule: 〈T1

a⇒T2〉l e is well formed in mode m when
`m a ‖ T1 ⇒ T2 and e is a T1. Allowing any cast between
compatible base types is conservative: a cast from {x :Int | x > 0}
to {x :Int | x ≤ 0} always fails. Earlier work has used SMT
solvers to try to statically reject certain casts and eliminate those
that are guaranteed to succeed [3, 8, 17]; we omit these checks, as
we view them as secondary—a static analysis offering bug-finding
and optimization, and not the essence of the system.

The final rule, T CHECK, is used for checking active checks,
which should only occur at runtime. In fact, they should only ever
be applied to closed terms; the rule allows for any well formed
context as a technical device for weakening.

To truly say that our languages share a syntax and a type system,
we highlight a subset of type derivations as source program type
derivations. We show that source programs well typed in one mode
are well typed in the all modes (Appendix A).

3.1 Definition [Source program]: A source program type deriva-
tion obeys the following rules:

– T CONST only ever assigns the type {x :ty(k) | true}.
– Casts have empty annotations a = •.
– T CHECK, T STACK (Section 6), and T BLAME are not used.

3.4 Metatheory
One distinct advantage of having a single syntax with parame-
terized semantics is that some of the metatheory can be done
once for all modes. Each mode proves its own canonical forms
lemma—since each mode has a unique notion of value—and
its own progress and preservation lemmas for syntactic type
soundness [28]. But other standard metatheoretical machinery—
weakening, substitution, and regularity—can be proved for all
modes at once (see Section A.1 in the technical appendix). To
wit, we prove syntactic type soundness in Section A.2 for classic
λH in just three mode-specific lemmas: canonical forms, progress,
and preservation.

3.5 Overview
In the rest of this paper, we give the semantics for three space-
efficient modes for λH, relating the languages’ behavior on source
programs (Definition 3.1). The forgetful mode is space efficient
without annotations, converging to a value more often than classic
λH (m = F; Section 4). The heedful mode is space efficient and
uses type sets to converge to a value exactly when classic λH does;
it may blame different labels, though (m = H; Section 5). The
eidetic mode is space efficient and uses coercions to track pending
checks; it behaves exactly like classic λH (m = E; Section 6).

One may wonder why we even bother to mention forgetful and
heedful λH, if eidetic λH is soundly space efficient with respect to
classic λH. These two ‘intermediate’ modes are interesting as an
exploration of the design space—but also in their own right.

Forgetful λH takes a radical approach that involves skipping
checks—its soundness is rather surprising and offers insights into
the semantics of contracts. Contracts have been used for more than
avoiding wrongness, though: they have been used in PLT Racket
for abstraction and information hiding [20, 21]. Forgetful λH can’t
use contracts for information hiding. Suppose we implement user
records as functions from strings to strings. We would like to pass
a user record to an untrusted component, hiding some fields but
not others. We can achieve this by specifying a white- or blacklist
in a contract, e.g., {f :String | f 6= “password′′}→{v :String |
true}. Wrapping a function in this contract introduces a function
proxy... which can be overwritten by E CASTMERGE! To really get
information hiding, the programmer must explicitly η-expand the

DRAFT 5 2014/7/14

Context and type well formedness `m Γ `m T

`m ∅
WF EMPTY

`m Γ `m T

`m Γ, x :T
WF EXTEND

`m {x :B | true}
WF BASE

x :{x :B | true} `m e : {x :Bool | true}
`m {x :B | e}

WF REFINE
`m T1 `m T2

`m T1→T2
WF FUN

Type compatibility and annotation well formedness ` T1 ‖ T2 `m a ‖ T1 ⇒ T2

` {x :B | e1} ‖ {x :B | e2}
S REFINE

` T11 ‖ T21 ` T12 ‖ T22

` T11→T12 ‖ T21→T22
S FUN

` T1 ‖ T2 `m T1 `m T2

`m • ‖ T1 ⇒ T2
A NONE

Expression typing Γ `m e : T

`m Γ x :T ∈ Γ

Γ `m x : T
T VAR

`m T1 Γ, x :T1 `m e12 : T2

Γ `m λx :T1. e12 : T1→T2
T ABS

`m Γ `m T

Γ `m ⇑l : T
T BLAME

`m Γ `m {x :B | e} ty(k) = B e[k/x] −→∗m true

Γ `m k : {x :B | e}
T CONST

ty(op) = T1 → ... → Tn→T Γ `m ei : Ti

Γ `m op(e1, . . . , en) : T
T OP

Γ `m e1 : (T1→T2) Γ `m e2 : T1

Γ `m e1 e2 : T2
T APP

`m a ‖ T1 ⇒ T2 Γ `m e : T1

Γ `m 〈T1
a⇒T2〉l e : T1→T2

T CAST

`m Γ `m {x :B | e1} ty(k) = B ∅ `m e2 : {x :Bool | true} e1[k/x] −→∗m e2

Γ `m 〈{x :B | e1}, e2, k〉l : {x :B | e1}
T CHECK

Figure 3. Universal typing rules of λH

function proxy, writing (λf :{f :String | f 6= “password′′}. . . .).
Forgetful λH’s contracts can’t enforce abstractions.

While Siek and Wadler [25] uses the lattice of type precision
in their threesomes without blame, our heedful λH uses the power-
set lattice of types. Just as Siek and Wadler use labeled types and
meet-like composition for threesomes with blame, we may be able
to derive something similar for heedful and eidetic λH: in a (non-
commutative) skew lattice, heedful uses a potentially re-ordering
conjunction while eidetic preserves order. A lattice-theoretic ac-
count of casts, coercions, and blame may be possible.

4. Forgetful space efficiency
In forgetful λH, we offer a simple solution to space-inefficient casts:
just forget about them. Function proxies only ever wrap lambda
abstractions; trying to cast a function proxy simply throws away
the inner proxy. Just the same, when accumulating casts on the
stack, we throw away all but the last cast. Readers may wonder:
how can this ever be sound? Several factors work together to make
forgetful λH a sound calculus. In short, the key ingredients are call-
by-value evaluation and the observation that (one understanding of)
type safety only talks about reduction to values.

In this section, our mode m = F: our evaluation relation is−→F

and we use typing judgments of the form, e.g. Γ `F e : T . Forget-
ful λH is the simplest of the space-efficient calculi: it just uses the
standard typing rules from Figure 3 and the space-efficient reduc-
tion rules from Figure 2. We give the new operational definitions for
m = F in Figure 4: a new value rule and the definition of the merge
operator. First, V PROXYF says that function proxies in forgetful
λH are only values when the proxied value is a lambda (and not an-
other function proxy). Limiting the number of function proxies is
critical for establishing a space bounds, as we do in Section 8. For-

Values and merging valF e

valF 〈T11→T12
∅⇒T21→T22〉l λx :T . e

V PROXYF

mergeF(T1, •,T2, •,T3) = •

Figure 4. Operational semantics of forgetful λH

e = 〈{x :Int | x mod 2 = 0} •⇒{x :Int | x 6= 0}〉l3
(〈{x :Int | x ≥ 0} •⇒{x :Int | x mod 2 = 0}〉l2

(〈{x :Int | true} •⇒{x :Int | x ≥ 0}〉l1 −1))
(E CASTMERGE)

−→F 〈{x :Int | x ≥ 0} •⇒{x :Int | x 6= 0}〉l3
(〈{x :Int | true} •⇒{x :Int | x ≥ 0}〉l1 −1)

(E CASTMERGE)

−→F 〈{x :Int | true} •⇒{x :Int | x 6= 0}〉l3 −1
(E CHECKNONE)

−→F 〈{x :Int | x 6= 0},−1 6= 0,−1〉l3
(E CHECKINNER/E OP)

−→F 〈{x :Int | x 6= 0}, true,−1〉l3 (E CHECKOK)
−→F −1

Figure 5. Example of forgetful λH

getful casts don’t use annotations, so they just use A NONE. The
forgetful merge operator just forgets the intermediate type T2.

We demonstrate this semantics on the example from Section 3.1
in Figure 5. We first step by merging casts, forgetting the intermedi-

DRAFT 6 2014/7/14

ate type. Then contract checking proceeds as normal for the target
type; since−1 is non-zero, the check succeeds and returns its scru-
tinee by E CHECKOK.

The type soundness property typically has two parts: (a) well
typed programs don’t go ‘wrong’ (for us, getting stuck), and (b)
well typed programs reduce to programs that are well typed at the
same type. How could a forgetful λH program go wrong, violat-
ing property (a)? The general “skeletal” structure of types means
we never have to worry about errors caught by simple type sys-
tems, such as trying to apply a non-function. Our semantics can
get stuck by trying to apply an operator to an input that isn’t
in its domain, e.g., trying to divide by zero. To guarantee that
we avoid stuck operators, λH generally relies on subject reduc-
tion, property (b). Operators are assigned types that avoid stuck-
ness, i.e., ty(op) and [[op]] agree. Some earlier systems have done
this [8, 16] while others haven’t [2, 11]. We view it as a criti-
cal component of contract calculi. So for, say, integer division,
ty(div) = {x :Int | true}→{y :Int | y 6= 0}→{z :Int | true}. To
actually use div in a program, the second argument must be typed
as a non-zero integer—by a non-source typing with T CONST di-
rectly (see Definition 3.1) or by casting (T CAST). It may seem
dangerous: casts protect operators from improper values, prevent-
ing stuckness; forgetful λH eliminates some casts. But consider the
cast eliminated by E CASTMERGE:

〈T2
•⇒T3〉l (〈T1

•⇒T2〉l
′
e) −→F 〈T1

•⇒T3〉l e

While the program tried to cast e to a T2, it immediately cast
it back out—no operation relies on e being a T2. Skipping the
check doesn’t risk stuckness. Since λH is call-by-value, we can use
the same reasoning to allow functions to assume that their inputs
inhabit their types—a critical property for programmer reasoning.

Forgetful λH enjoys soundness via a standard syntactic proof,
reusing the theorems from Section A.1. What’s more, source pro-
grams are well typed in classic λH iff they are well typed in for-
getful λH: both languages can run the same terms. Proofs are in
Section A.3.

5. Heedful space efficiency
Heedful λH (m = H) takes the cast merging strategy from forgetful
λH, but uses type sets on casts and function proxies to avoid drop-
ping casts. Space efficiency for heedful λH rests on the use of sets:
classic λH allows for arbitrary lists of function proxies and casts
on the stack to accumulate. Restricting this accumulation to a set
gives us a straightforward bound on the amount of accumulation: a
program of fixed size can only have so many types at each size. We
discuss this idea further in Section 8.

We extend the typing rules and operational semantics Figure 6.
Up until this point, we haven’t used annotations. Heedful λH col-
lects type sets as casts merge to record the types that must be
checked. The A TYPESET annotation well formedness rule ex-
tends the premises of A NONE with the requirement that if `H S ‖
T1 ⇒ T2, then all the types in S are well formed and compatible
with T1 and T2. Type set compatibility is stable under removing
elements from the set S, and it is symmetric and transitive with re-
spective to its type indices (since compatibility itself is symmetric
and transitive).

One might expect the types in type sets to carry blame labels—
might we then be able to have sound space efficiency? It turns out
that just having labels in the sets isn’t enough—we actually need
to keep track of the ordering of checks. Eidetic λH (Section 6) does
exactly this tracking. Consider this calculus a warmup.

Heedful λH adds some evaluation rules to the universal ones
found in Figure 2. First E TYPESET takes a source program
cast without an annotation and annotates it with an empty set.

Type set well formedness `m S ‖ T1 ⇒ T2

` T1 ‖ T2 `H T1 `H T2

∀T ∈ S. `H T ` T ‖ T1

`H S ‖ T1 ⇒ T2
A TYPESET

Values and operational semantics valH e e1 −→H e2

valH 〈T11→T12
S⇒T21→T22〉l λx :T . e

V PROXYH

〈T1
•⇒T2〉l e −→H 〈T1

∅⇒T2〉l e
E TYPESET

〈{x :B | e1}
∅⇒{x :B | e2}〉l k −→H

〈{x :B | e2}, e2[k/x], k〉l

E CHECKEMPTY

choose(S) = {x :B | e2}

〈{x :B | e1}
S⇒{x :B | e3}〉l k −→H

〈{x :B | e2}
S\{x :B|e2}⇒ {x :B | e3}〉l

〈{x :B | e2}, e2[k/x], k〉l

E CHECKSET

choose(S) ∈ S when S 6= ∅

mergeH(T1,S1,T2,S2,T3) = S1 ∪ S2 ∪ {T2}

dom(S) =
⋃

T∈S dom(T)
cod(S) =

⋃
T∈S cod(T)

Figure 6. Annotation typing and operational semantics of heedful
λH

E CHECKEMPTY is exactly like E CHECKNONE, though we sep-
arate the two to avoid conflating the empty annotation • and the
empty set ∅. In E CHECKSET, we use an essentially unspecified
function choose to pick a type from a type set to check. Using the
choose function is theoretically expedient, as it hides all of heedful
λH’s nondeterminism. Nothing is inherently problematic with this
nondeterminism, but putting it in the reduction relation itself com-
plicates the proof of strong normalization that is necessary for the
proof relating classic and heedful λH (Section 7).

For function types, we define dom(S) and cod(S) by mapping
the underlying function on types over the set. Note that this may
shrink the size of the set S, but never grow it—there can’t be more
unique (co)domain types in S than there are types.

The merge operator, used in E CASTMERGE, merges two sets
by unioning the two type sets with the intermediate type, i.e.:

〈T2
S2⇒T3〉l2 (〈T1

S1⇒T2〉l1 e) −→H 〈T1
S1∪S2∪{T2}⇒ T3〉l2 e

There are some subtle interactions here between the different
annotations: we won’t merge casts that haven’t yet stepped by
E TYPESET because mergeH(T1, •,T2, •,T3) isn’t defined.

We demonstrate the heedful semantics by returning to the ex-
ample from Section 3.1 in Figure 7. To highlight the difference
between classic and heedful λH, we select a choose function that
has heedful check the refinements out of order, failing on the check
for evenness rather than the check for positivity. The real source
of difference, however, is that E CASTMERGE takes the second
blame label of the two casts it merges. Taking the first wouldn’t
be right, either: suppose that the target type of the l1 cast wasn’t
{x :Int | x ≥ 0}, but some other type that −1 inhabits. Then clas-
sic λH would blame l2, but heedful λH would have held onto l1. The

DRAFT 7 2014/7/14

e = 〈{x :Int | x mod 2 = 0} •⇒{x :Int | x 6= 0}〉l3
(〈{x :Int | x ≥ 0} •⇒{x :Int | x mod 2 = 0}〉l2

(〈{x :Int | true} •⇒{x :Int | x ≥ 0}〉l1 −1))
(E TYPESET, E CASTINNER/E TYPESET)

−→∗H 〈{x :Int | x mod 2 = 0} ∅⇒{x :Int | x 6= 0}〉l3

(〈{x :Int | x ≥ 0} ∅⇒{x :Int | x mod 2 = 0}〉l2
(〈{x :Int | true} •⇒{x :Int | x ≥ 0}〉l1 −1))

(E CASTMERGE)

−→H 〈{x :Int | x ≥ 0}{{x :Int|x mod 2=0}}⇒ {x :Int | x 6= 0}〉l3
(〈{x :Int | true} •⇒{x :Int | x ≥ 0}〉l1 −1)

(E CASTINNER/E TYPESET)

−→H 〈{x :Int | x ≥ 0}{{x :Int|x mod 2=0}}⇒ {x :Int | x 6= 0}〉l3

(〈{x :Int | true} ∅⇒{x :Int | x ≥ 0}〉l1 −1)
(E CASTMERGE)

−→H 〈{x :Int | true} S⇒{x :Int | x 6= 0}〉l3 −1
where S = {{x :Int | x mod 2 = 0}, {x :Int | x ≥ 0}}
(E CHECKSET, choose(S) = {x :Int | x mod 2 = 0})

−→H 〈{x :Int | x mod 2 = 0}S
′
⇒{x :Int | x 6= 0}〉l3

〈{x :Int | x mod 2 = 0},−1mod 2 = 0,−1〉l3
where S′ = {{x :Int | x ≥ 0}}

(E CASTINNER/E CHECKINNER/E OP)

−→H 〈{x :Int | x mod 2 = 0}S
′
⇒{x :Int | x 6= 0}〉l3

〈{x :Int | x mod 2 = 0}, 1 = 0,−1〉l3
(E CASTINNER/E CHECKINNER/E OP)

−→H 〈{x :Int | x mod 2 = 0}S
′
⇒{x :Int | x 6= 0}〉l3

〈{x :Int | x mod 2 = 0}, false,−1〉l3
(E CASTINNER/E CHECKFAIL)

−→H 〈{x :Int | x ≥ 0} ∅⇒{x :Int | x 6= 0}〉l3 ⇑l3
(E CASTRAISE)

−→H ⇑l3

Figure 7. Example of heedful λH

solution to this blame tracking problem is to hold onto blame labels
in annotations—which, again, is exactly what we do in eidetic λH.

The syntactic proof of type soundness for heedful λH appears
in an appendix in Section A.4. We also have “source typing” for
heedful λH: source programs are well typed when m = C iff they
are well typed when m = H. As a corollary, source programs are
well typed in F if and only if they are well typed in H.

6. Eidetic space efficiency
Eidetic λH uses coercions, a more refined system of annotations
than heedful λH’s type sets. Coercions do two things that type sets
don’t: they retain check order, and they track blame. Our coercions
are ultimately inspired by those of Henglein [13]; we discuss the
relation in Section 9. Recall the syntax of coercions from Figure 1:

c ::= r | c1 7→ c2
r ::= nil | {x :B | e}l , r

Coercions come in two flavors: blame-annotated refinement lists
r—zero or more refinement types, each annotated with a blame
label—and function coercions c1 7→ c2. We define the coercion
well formedness rules, an additional typing rule, and reduction
rules for eidetic λH in Figure 8. To ease the exposition, our ex-
planation doesn’t mirror the rule groupings in the figure.

As a general intuition, coercions are plans for checking: they
contain precisely those types to be checked. Refinement lists are
well formed for casts between {x :B | e1} and {x :B | e2}
when: (a) every type in the list is a blame-annotated, well formed

refinement of B , i.e., all the types are of the form {x :B | e}l and
are therefore similar to the indices; (b) there are no duplicated types
in the list; and (c) the target type {x :B | e2} is in the list. Note
that the input type for all refinement lists can be any well formed
refinement—this corresponds to the intuition that base types have
no negative parts, i.e., casts between refinements ignore the type
on the left. Finally, we simply write “no duplicates in r”—it is
an invariant during the evaluation of source programs. Function
coercions, on the other hand, have a straightforward (contravariant)
well formedness rule.

The E COERCE rule translates source-program casts to coer-
cions: coerce(T1,T2, l) is a coercion representing exactly the
checking done by the cast 〈T1

•⇒T2〉l. All of the refinement types
in coerce(T1,T2, l) are annotated with the blame label l , since
that’s the label that would be blamed if the cast failed at that type.
Since a coercion is a complete plan for checking, a coercion an-
notation obviates the need for type indices and blame labels. To
this end, E COERCE drops the blame label from the cast, replacing
it with an empty label. We keep the type indices so that we can
reuse E CASTMERGE from the universal semantics, and also as a
technical device in the preservation proof.

The actual checking of coercions rests on the treatment of re-
finement lists: function coercions are expanded as functions are ap-
plied by E UNWRAP, so they don’t need much special treatment
beyond a definition for dom and cod. Eidetic λH uses coercion
stacks 〈{x :B | e1}, s, r , k , e2〉• to evaluate refinement lists. Coer-
cion stacks are type checked by T STACK (in Figure 8). We explain
the operational semantics before explaining the typing rule. Coer-
cion stacks are runtime-only entities comprising five parts: a target
type, a status, a pending refinement list, a constant scrutinee, and a
checking term. We keep the target type of the coercion for preser-
vation’s sake. The status bit s is eitherX or ?: when the status isX,
we or currently checking or have already checked the target type
{x :B | e1}; when it is ?, we haven’t. The pending refinement list r
holds those checks not yet done. When s = ?, the target type is still
in r . The scrutinee k is the constant we’re checking; the checking
term e is either the scrutinee k itself, or it is an active check on k .

The evaluation of a coercion stack proceeds as follows. First,
E COERCESTACK starts a coercion stack when a cast between
refinements meets a constant, recording the target type, setting the
status to ?, and setting the checking term to k . Then E STACKPOP
starts an active check on the first type in the refinement list, using its
blame label on the active check—possibly updating the status if the
type being popped from the list is the target type. The active check
runs by the congruence rule E STACKINNER, eventually returning
k itself or blame. In the latter case, E STACKRAISE propagates the
blame. If not, then the scrutinee is k once more and E STACKPOP
can fire again. Eventually, the refinement list is exhausted, and
E STACKDONE returns k .

Now we can explain T STACK’s many jobs. It must recapitulate
A REFINE, but not exactly—since eventually the target type will be
checked and no longer appear in r . The status differentiates what
our requirement is: when s = ?, the target type is in r . When
s = X, we either know that k inhabits the target type or that we are
currently checking the target type (i.e., an active check of the target
type at some blame label reduces to our current checking term).

Finally, we must define a merge operator, mergeE. We define
it in terms of the B operator, which is very nearly concatenation
on refinement lists and a contravariant homomorphism on function
coercions—except that it refuses to allow duplicate types to appear,
choosing the leftmost blame label. Contravariance means that c1 B
c2 takes leftmost labels in positive positions and rightmost labels in
negative ones. As we show below, this corresponds to the positive
parts taking older labels and negative parts taking newer ones.

DRAFT 8 2014/7/14

Coercion well formedness and term typing `m c ‖ T1 ⇒ T2 Γ `m e : T

`E {x :B | e1} `E {x :B | e2} `E r ‖ {x :B | e1} ⇒ {x :B | e2}
∀{x :B | e} ∈ r . `E {x :B | e} no duplicates in r {x :B | e2} ∈ r

`E r ‖ {x :B | e1} ⇒ {x :B | e2}
A REFINE

`E c1 ‖ T21 ⇒ T11 `E c2 ‖ T12 ⇒ T22

`E c1 7→ c2 ‖ (T11→T12)⇒ (T21→T22)
A FUN

`E Γ `E {x :B | e1} ty(k) = B ∅ `E e2 : {x :B | e3} ∀{x :B | e} ∈ r . `E {x :B | e}
(s = X ⊃ e1[k/x] −→∗E true ∨ ∃l . 〈{x :B | e1}, e1[k/x], k〉l −→∗E e2) (s = ? ⊃ {x :B | e1} ∈ r)

Γ `E 〈{x :B | e1}, s, r , k , e2〉• : {x :B | e2}
T STACK

Values and operational semantics valE e e1 −→E e2

valE 〈T11→T12
c1 7→c2⇒ T21→T22〉• λx :T . e

V PROXYE

〈T1
•⇒T2〉l e −→E 〈T1

coerce(T1,T2,l)⇒ T2〉• e
E COERCE

〈{x :B | e1}
r⇒{x :B | e2}〉• k −→E 〈{x :B | e2}, ?, r , k , k〉•

E COERCESTACK

〈{x :B | e}, s, ({x :B | e′}l , r), k , k〉• −→E 〈{x :B | e}, s ∨ (e = e′), r , k , 〈{x :B | e′}, e′[k/x], k〉l 〉•
E STACKPOP

e′ −→E e′′

〈{x :B | e}, s, r , k , e′〉• −→E 〈{x :B | e}, s, r , k , e′′〉•
E STACKINNER

〈{x :B | e}, s, r , k ,⇑l ′〉• −→E ⇑l ′
E STACKRAISE

〈{x :B | e},X, nil, k , k〉• −→E k
E STACKDONE

Cast translation and coercion operations

mergeE(T1, c1,T2, c2,T3) = c1 B c2
dom(c1 7→ c2) = c1
cod(c1 7→ c2) = c2

coerce({x :B | e1}, {x :B | e2}, l) = {x :B | e2}l
coerce(T11→T12,T21→T22, l) = coerce(T21,T11, l) 7→ coerce(T12,T22, l)

{x :B | e}l B nil = {x :B | e}l
{x :B | e}l B r = {x :B | e}l , (r \ {x :B | e})

nil B r2 = r2
({x :B | e}l , r1) B r2 = {x :B | e}l B (r1 B r2)

(c11 7→ c12) B (c21 7→ c22) = (c21 B c11) 7→ (c12 B c22)

(nil \ {x :B | e}) = nil

({x :B | e1}l , r \ {x :B | e}) =

{
r e = e1
{x :B | e1}l , (r \ {x :B | e}) e1 6= e

X ∨ (e1 = e2) = X

? ∨ (e1 = e2) =

{
X e1 = e2
? otherwise

Figure 8. Typing rules and operational semantics for eidetic λH

By way of example, consider a cast from T1 = {x :Int | x ≥
0}→{x :Int | x ≥ 0} to T2 = {x :Int | true}→{x :Int | x > 0}.
Unfolding (〈T1

•⇒T2〉l v1) v2 in classic λH, we see that T1’s
domain is checked but its codomain isn’t; the reverse is true for
T2. When looking at a cast, we can read off which refinements are
checked by looking at the positive parts of the target type and the
negative parts of the source type. The relationship between casts
and polarity is not a new one [5, 10, 12, 14, 27]. Unlike casts,
coercions directly express the sequence of checks to be performed.
Consider the coercion generated from the cast above:

(〈T1
•⇒T2〉l v1) v2

−→E (〈T1
c⇒T2〉• v1) v2
where c = {x :Int | x ≥ 0}l 7→ {x :Int | x > 0}l

−→E (〈T11→T12
c⇒T21→T22〉• v1) v2

−→E 〈T12
{x :Int|x>0}l⇒ T22〉• (v1 (〈T21

{x :Int|x≥0}l⇒ T11〉• v2))

In this example, there is only a single blame label, l . Tracking
blame labels is critical for exactly matching classic λH’s behav-
ior. To see why, we return to our example from before in Figure 9.

Throughout the merging, each refinement type retains its own orig-
inal blame label, allowing eidetic λH to behave just like classic λH.

We offer a final example, showing how coercions with redun-
dant types are merged. The intuition here is that positive positions
are checked covariantly—oldest (innermost) cast first—while neg-
ative positions are checked contravariantly—newest (outermost)
cast first. Consider the classic λH term:

T1 = {x :Int | e11}→{x :Int | e21}
T2 = {x :Int | e12}→{x :Int | e22}
T3 = {x :Int | e13}→{x :Int | e22}
e = 〈T2

•⇒T3〉l2 (〈T1
•⇒T2〉l1 v)

Note that the casts run inside-out, from old to new in the positive
position, but they run from the outside-in, new to old, in the nega-
tive position.

e v ′ −→C 〈{x :Int | e22}
•⇒{x :Int | e22}〉l2

(〈{x :Int | e21}
•⇒{x :Int | e22}〉l1

(v (〈{x :Int | e12}
•⇒{x :Int | e12}〉l1

(〈{x :Int | e13}
•⇒{x :Int | e12}〉l2 v ′))))

DRAFT 9 2014/7/14

e = 〈{x :Int | x mod 2 = 0} •⇒{x :Int | x 6= 0}〉l3
(〈{x :Int | x ≥ 0} •⇒{x :Int | x mod 2 = 0}〉l2
(〈{x :Int | true} •⇒{x :Int | x ≥ 0}〉l1 −1))

(E COERCE)

−→E 〈{x :Int | x mod 2 = 0}{x :Int|x 6=0}l3⇒ {x :Int | x 6= 0}〉l3
(〈{x :Int | x ≥ 0} •⇒{x :Int | x mod 2 = 0}〉l2
(〈{x :Int | true} •⇒{x :Int | x ≥ 0}〉l1 −1))

(E CASTINNER/E COERCE)

−→E 〈{x :Int | x mod 2 = 0}{x :Int|x 6=0}l3⇒ {x :Int | x 6= 0}〉l3

(〈{x :Int | x ≥ 0}{x :Int|x mod 2=0}l2⇒ {x :Int | x mod 2 = 0}〉l2
(〈{x :Int | true} •⇒{x :Int | x ≥ 0}〉l1 −1))

(E CASTMERGE)

−→E 〈{x :Int | x ≥ 0} r
′
⇒{x :Int | x 6= 0}〉l3

(〈{x :Int | true} •⇒{x :Int | x ≥ 0}〉l1 −1)
where r ′ = {x :Int | x mod 2 = 0}l2 , {x :Int | x 6= 0}l3

(E CASTINNER/E COERCE)

−→E 〈{x :Int | x ≥ 0} r
′
⇒{x :Int | x 6= 0}〉l3

(〈{x :Int | true}{x :Int|x≥0}l1⇒ {x :Int | x ≥ 0}〉l1 −1)
(E CASTMERGE)

−→E 〈{x :Int | true} r⇒{x :Int | x 6= 0}〉l3 −1
where r = {x :Int | x ≥ 0}l1 , r ′

(E COERCESTACK)
−→E 〈{x :Int | x 6= 0}, ?, r ,−1,−1〉•

(E STACKPOP)
−→E 〈{x :Int | x 6= 0}, ?, r ′,−1,

〈{x :Int | x ≥ 0},−1 ≥ 0,−1〉l1 〉•
−→∗E ⇑l1

Figure 9. Example of eidetic λH

The key observation for eliminating redundant checks is that only
the first check can fail—there’s no point in checking a predicate
contract twice on the same value. So eidetic λH merges like so:

e −→∗E 〈T2
{x :Int|e12}l2 7→{x :Int|e22}l2⇒ T3〉•

(〈T1
{x :Int|e11}l1 7→{x :Int|e22}l1⇒ T2〉• v)

−→E 〈T1
c⇒T3〉• v

where

c = ({x :Int | e12}l2 B {x :Int | e11}l1) 7→
({x :Int | e22}l1 B {x :Int | e22}l2)

= {x :Int | e12}l2 , {x :Int | e11}l1 7→ {x :Int | e22}l1

The coercion merge operator eliminates the redundant codomain
check, choosing to keep the one with blame label l1. Choosing l1
makes sense here because the codomain is a positive position and
l1 is the older, innermost cast.

As we did for the other calculi, we present the routine syntactic
proof of type soundness in the appendix (Section A.5). Like for-
getful and heedful λH before, eidetic λH shares source programs
(Definition 3.1) with classic λH. With this final lemma, we know
that all modes share the same well typed source programs.

7. Soundness for space efficiency
We want space efficiency to be sound: it would be space efficient
to never check anything. Classic λH is normative: the more a mode
behaves like classic λH, the “sounder” it is.

A single property summarizes how a space-efficient calculus
behaves with respect to classic λH: cast congruence. In classic

Value rules e1 ∼m e2 : T

k ∼m k : {x :B | e} ⇐⇒ ty(k) = B ∧ e[k/x] −→∗m true
e11 ∼m e21 : T1→T2 ⇐⇒ valC e1 ∧ valm e2 ∧

∀e12 ∼m e22 : T1. e11 e12 'm e21 e22 : T2

Term rules e1 ⇓m e2 : T e1 'm e2 : T

e1 ⇓m e2 : T ⇐⇒ e1 −→∗C e′1 ∧ valC e′1 ∧
e2 −→∗m e′2 ∧ valm e′2 ∧
e′1 ∼m e′2 : T

e1 'F e2 : T ⇐⇒ e1 −→∗C ⇑l ∨ e1 ⇓F e2 : T
e1 'H e2 : T ⇐⇒ (e1 −→∗C ⇑l ∧ e2 −→∗H ⇑l

′) ∨ e1 ⇓H e2 : T
e1 'E e2 : T ⇐⇒ (e1 −→∗C ⇑l ∧ e2 −→∗E ⇑l) ∨ e1 ⇓E e2 : T

Type rules T1 ∼m T2

{x :B | e1} ∼m {x :B | e2} ⇐⇒
∀e′1 ∼m e′2 : {x :B | true}.
e1[e′1/x] 'm e2[e′2/x] : {x :Bool | true}

T11→T12 ∼m T21→T22 ⇐⇒ T11 ∼m T21 ∧ T12 ∼m T22

Closing substitutions and open terms Γ |=m δ

Γ ` e1 'm e2 : T

Γ |=m δ ⇐⇒ ∀x ∈ dom(Γ). δ1(x) ∼m δ2(x) : Γ(x)
Γ ` e1 'm e2 : T ⇐⇒ ∀Γ |=m δ. δ1(e1) 'm δ2(e2) : T

Figure 11. Modal logical relations relating classic λH to space-
efficient modes

λH, if e1 −→C e2 then 〈T1
•⇒T2〉l e1 and 〈T1

•⇒T2〉l e2 be-
have identically. This cast congruence principle is easy to see, be-
cause E CASTINNERC applies freely. In the space-efficient modes,
however, E CASTINNER can only apply when E CASTMERGE
doesn’t. Merged casts may not behave the same as running the
two casts separately. We summarize the results in commutative di-
agrams in Figure 10. Forgetful λH has the property that if the un-
merged casts reduce to a value, then so do the merged ones. But
the merged casts may reduce to a value when the unmerged ones
reduce to blame—because forgetful merging skips checks. Heedful
λH has a stronger property: the merged and unmerged casts coter-
minate at results, if the merged term reduces to blame or a value,
so does the unmerged term. If they both go to values, they go to the
exact same value; but if they both go to blame, they may blame dif-
ferent labels. This is a direct result of E CASTMERGE saving only
one label from casts. Finally, eidetic λH has a property as strong as
heedful λH: the merged and unmerged casts coterminate exactly.

It is particularly nice that the key property for relating modes
can be proved entirely within each mode, i.e., the cast congruence
lemma for forgetful λH is proved independently of classic λH.

The proofs of cast congruence are in Appendix B, but there are
two points worth observing here. First, we need strong normaliza-
tion to prove cast congruence for heedful λH: if we reorder checks,
we need to know that reordering checks doesn’t change the ob-
servable behavior. Second, both heedful and eidetic λH eliminate
redundant checks when merging casts, the former by using sets and
the latter by means of the B operator. These two calculi show that
checking is idempotent: checking a property once is as good as
checking it twice—which only holds when checks are pure.

Our proofs relating classic λH and the space-efficient modes
are by (mode-indexed) logical relations, found in Figure 11. The

DRAFT 10 2014/7/14

Forgetful λH

e1 e2

⇓

〈T1
•⇒T2〉l e1 〈T1

•⇒T2〉l e2

valF e

F

∗
F

∗F

Heedful λH

e1 e2

⇓

〈T1
•⇒T2〉l e1 〈T1

•⇒T2〉l e2

resultH e′1 ∼ resultH e′2

valH e

H

∗H ∗H

= =

Eidetic λH

e1 e2

⇓

〈T1
•⇒T2〉l e1 〈T1

•⇒T2〉l e2

resultE e

E

∗
E ∗

E

Figure 10. Cast congruence lemmas as commutative diagrams

relation is modal: in e1 ∼m e2 : T , the term e1 is a classic
λH term, while e2 and T are in mode m . Each mode’s logical
relation matches its cast congruence lemma: the forgetful logical
relation allows more blame on the classic side (not unlike the
asymmetric logical relations of Greenberg et al. [11]); the heedful
logical relation is blame-inexact, allowing classic and heedful λH to
raise different labels; the eidetic logical relation is exact. The proofs
can be found in Appendix B. They follow a fairly standard pattern
in each mode m: we show that applying C-casts and m-casts
between similar and related types to related values yields related
values (i.e., casts are applicative); we then show that well typed
C-source programs are related to m-source programs. As far as
alternative techniques go, an induction over evaluation derivations
wouldn’t give us enough information about evaluations that return
lambda abstractions. But other contextual equivalence techniques
(e.g., bisimulation) would probably work, too.

Our equivalence results for forgetful and heedful λH are subtle:
they would break down if we had effects other than blame. Forget-
ful λH changes which contracts are checked—and so which code is
run; heedful λH can reorder when code is run. Well typed λH pro-
grams in this paper are strongly normalizing. If we allowed non-
termination, for example, then we could construct source programs
that diverge in classic λH and converge in forgetful λH, or source
programs that diverge in one of classic and heedful λH and con-
verge in the other. Similarly, if blame were a catchable exception,
we would have no relation for these two modes at all: since they
can raise different blame labels, different exception handlers could
have entirely different behavior. Eidetic λH doesn’t reorder checks,
though, so its result is more durable. As long as checks are pure,
eidetic and classic λH coincide.

One might ask, then, why we bother proving strong results for
forgetful and heedful if they only adhere in such a restricted set-
ting? First, we wish to explore the design space—and forgetful and
heedful offer insights into the semantics and structure of casts. Sec-
ond, we want to show soundness of space efficiency in isolation—
implementations always differ from the theory. Analagously, lan-
guages with first-class stack traces make tail-call optimization
observable, but this change in semantics is typically considered
worthwhile—space efficiency is more important.

8. Bounds for space efficiency
We have claimed that forgetful, heedful, and eidetic λH are space
efficient: what do we mean? What sort of space efficiency have
we achieved in our various calculi? We summarize the results in
Table 1; proofs are in Appendix C. Suppose that a type of height h
can be represented in Wh bits and a label in L bits. Casts in classic
and forgetful λH each take up 2Wh +L bits: two types and a blame
label. Casts in heedful λH take up more space—2Wh + 2Wh + L
bits—because they need to keep track of the type set. Coercions

Mode Cast size Pending casts
Classic (m = C) 2Wh + L ∞

Forgetful (m = F) 2Wh + L |e|
Heedful (m = H) 2Wh + 2Wh + L |e|
Eidetic (m = E) s2L+W1 |e|

Table 1. Space efficiency of λH

in eidetic λH have a different form: the only types recorded are
those of height 1, i.e., refinements of base types. Pessimistically,
each of these may appear at every position in a function coercion
c1 7→ c2. We use s to indicate the “size” of a function type, i.e., the
number of positions it has. A coercion has a set of refinements and
blame labels at each position which take up 2L+W1 space, leading
to s2L+W1 space per coercion. A more precise bound might track
which refinements appear in which parts of a function type, but in
the worst caseit degenerates to the bound we give here. Classic λH
can have an infinite number of “pending casts”—casts and function
proxies—in a program. Forgetful, heedful and eidetic λH can have
no more than one pending cast per term node—abstractions are
limited to a single function proxy, and E CASTMERGE merges
adjacent pending casts.

The text of a program e is finite, so the set of types appearing
in the program, types(e), is also finite. Since reduction doesn’t
introduce types, we can bound the number of types in a program
(and therefore the sizes of casts). We can therefore fix a numerical
coding for types at runtime, where we can encode a type in W =
log2(|types(e)|) bits. In a given cast, W over-approximates how
many types can appear: the source, target, and annotation must
all be compatible, which means they must also be of the same
height. We can therefore represent the types in casts with fewer
bits: Wh = log2(|{T | T ∈ types(e) ∧ height(T) = h}|). In the
worst case, we revert to the original bound: all types in the program
are of height 1. Eidetic λH’s coercions never hold types greater than
height 1; the types on its casts are erasable once the coercions are
generated—coercions drive the checking.

The bounds we find here are galactic—but that is not the point.
Having established that contracts are theoretically space efficient,
making an implementation practically space efficient is a differ-
ent endeavor, involving careful choices of representations and call-
ing conventions. We have shown that sound space efficiency is
possible—it is future work to produce a feasible implementation.

9. Related work
Some earlier work uses first-class casts, whereas our casts are
always applied to a term [2, 16]. It is of course possible to η-expand
a cast with an abstraction, so no expressiveness is lost. Leaving

DRAFT 11 2014/7/14

casts fully applied saves us from the puzzling rules managing
how casts work on other casts in space-efficient semantics, like:
〈T11→T12

•⇒T21→T22〉l 〈T11
•⇒T12〉l

′
−→F 〈T21

•⇒T22〉l.
Previous approaches to space-efficiency have focused on grad-

ual typing [24], using coercions [13], casts, casts annotated with
intermediate types a/k/a threesomes, or some combination of all
three [9, 15, 22, 23, 25]. Recent work relates all three frameworks,
making particular use of coercions [1]. Our type structure differs
from that of gradual types, so our space bounds come in a some-
what novel form. Gradual types, without the more complicated
checking that comes with predicate contracts, sometimes allow for
simpler proofs, e.g., by induction on evaluation [22]; even when
strong reasoning principles are needed, the presence of dynamic
types leads them to use bisimulation [1, 9, 25]. We use logical rela-
tions because λH’s type structure is readily available, and because
they allow us to easily reason about how checks evaluate.

Our coercions are inspired by Henglein’s coercions for model-
ing injection to and projection from the dynamic type [13]. Hen-
glein’s primitive coercions tag and untag values, while ours repre-
sent checks to be performed on base types; both our formulation
and Henglein’s use structural function coercions.

Greenberg [10], the most closely related work, offers a coer-
cion language combining the dynamic types of Henglein’s original
work with predicate contracts; his EFFICIENT language is our for-
getful λH without blame. He conjectures that blame for coercions
reads left to right (as it does in Siek and Garcia [23]); our eide-
tic λH verifies this conjecture. While Greenberg’s languages offer
dynamic, simple, and refined types, our types here are entirely re-
fined; his coercions use Henglein’s ! and ? syntax for injection and
projection; all of the coercions in our refinement lists are both in-
jections and projections. We abstain from using an interrobang ‘?!’
to reduce notation.

Dimoulas et al. [4] introduce option contracts, which offer a
programmatic way of turning off contract checking, as well as
a controlled way to “pass the buck”, handing off contracts from
component to component. Option contracts address time efficiency
more than space efficiency. Findler et al. [7] studied space and time
efficiency for datatype contracts.

PLT Racket contracts have a mild form of space efficiency,
checking for exact duplicate contracts at tail positions. The redun-
dancy it detects seems to rely on pointer equality. Since PLT Racket
contracts are (a) module-oriented “macro” contracts, and (b) first
class, this optimization is somewhat unpredictable—and limited
compared with our heedful and eidetic calculi.

10. Conclusion and future work
Semantics-preserving space efficiency for manifest contracts is
possible—leaving the admissibility of state as the final barrier to
practical utility. Forgetful λH is an interesting middle ground: if
contracts exist to make partial operations safe (and not abstraction
or information hiding), forgetfulness may be a good strategy.

We believe that a latent version of eidetic λH would not be
particularly hard to devise: simply compile contracts into coercions
and use our merge operator.

In our simple (i.e., not dependent) case, our refinement types
close over a single variable of base type. We can treat these re-
finement types as interned symbols, for which type comparison is
effectively integer comparison. But closure comparisons are noto-
riously fragile: optimizers may disrupt programmer expectations.
Space efficiency for a dependent calculus remains open.

Acknowledgments
Omitted for submission.

References
[1] Anonymous. Blame, coercion, and threesomes: Together again for the

first time. In submission., 2014.

[2] J. F. Belo, M. Greenberg, A. Igarashi, and B. C. Pierce. Polymorphic
contracts. In European Symposium on Programming (ESOP), 2011.

[3] G. M. Bierman, A. D. Gordon, C. Hriţcu, and D. Langworthy. Se-
mantic subtyping with an SMT solver. In International Conference on
Functional Programming (ICFP), 2010.

[4] C. Dimoulas, R. Findler, and M. Felleisen. Option contracts. In
OOPSLA, pages 475 – 494, 2013.

[5] R. B. Findler. Contracts as pairs of projections. In Symposium on
Logic Programming, 2006.

[6] R. B. Findler and M. Felleisen. Contracts for higher-order functions.
In International Conference on Functional Programming (ICFP),
2002.

[7] R. B. Findler, S.-Y. Guo, and A. Rogers. Lazy contract check-
ing for immutable data structures. In Implementation and Applica-
tion of Functional Languages, pages 111–128. 2008. doi: 10.1007/
978-3-540-85373-2 7.

[8] C. Flanagan. Hybrid type checking. In Principles of Programming
Languages (POPL), 2006.

[9] R. Garcia. Calculating threesomes, with blame. In International
Conference on Functional Programming (ICFP), 2013.

[10] M. Greenberg. Manifest Contracts. PhD thesis, University of Penn-
sylvania, November 2013.

[11] M. Greenberg, B. C. Pierce, and S. Weirich. Contracts made manifest.
JFP, 22(3):225–274, May 2012.

[12] J. Gronski and C. Flanagan. Unifying hybrid types and contracts. In
Trends in Functional Programming (TFP), 2007.

[13] F. Henglein. Dynamic typing: Syntax and proof theory. Sci. Comput.
Program., 22(3):197–230, 1994.

[14] D. Herman, A. Tomb, and C. Flanagan. Space-efficient gradual typing.
In Trends in Functional Programming (TFP), pages 404–419, 2007.

[15] D. Herman, A. Tomb, and C. Flanagan. Space-efficient gradual typing.
Higher Order Symbol. Comput., 23(2):167–189, June 2010.

[16] K. Knowles and C. Flanagan. Hybrid type checking. ACM Trans.
Prog. Lang. Syst., 32:6:1–6:34, 2010.

[17] K. Knowles, A. Tomb, J. Gronski, S. N. Freund, and C. Flanagan.
Sage: Hybrid checking for flexible specifications. In Scheme and
Functional Programming Workshop, 2006.

[18] R. Lipton, October 2010. URL http://goo.gl/6Grgt0.

[19] R. Milner. A theory of type polymorphism in programming. Journal
of Computer and System Sciences, 17:348–375, Aug. 1978.

[20] PLT. PLT Racket, 2013. URL http://racket-lang.org.

[21] PLT. PLT Racket contract system, 2013. URL http://pre.
plt-scheme.org/docs/html/guide/contracts.html.

[22] J. Siek, R. Garcia, and W. Taha. Exploring the design space of higher-
order casts. In Programming Languages and Systems, volume 5502 of
LNCS, pages 17–31. 2009.

[23] J. G. Siek and R. Garcia. Interpretations of the gradually-typed lambda
calculus. In Scheme and Functional Programming (SFP), 2012.

[24] J. G. Siek and W. Taha. Gradual typing for functional languages. In
Scheme and Functional Programming Workshop, September 2006.

[25] J. G. Siek and P. Wadler. Threesomes, with and without blame. In
Principles of Programming Languages (POPL), pages 365–376, 2010.

[26] N. Swamy, M. Hicks, and G. M. Bierman. A theory of typed coercions
and its applications. In International Conference on Functional Pro-
gramming (ICFP), pages 329–340, 2009. ISBN 978-1-60558-332-7.

[27] P. Wadler and R. B. Findler. Well-typed programs can’t be blamed. In
European Symposium on Programming (ESOP), 2009.

[28] A. K. Wright and M. Felleisen. A syntactic approach to type sound-
ness. Information and Computation, 115:38–94, 1994.

DRAFT 12 2014/7/14

http://goo.gl/6Grgt0
http://racket-lang.org
http://pre.plt-scheme.org/docs/html/guide/contracts.html
http://pre.plt-scheme.org/docs/html/guide/contracts.html

A. Proofs of type soundness
This appendix includes the proofs of type soundness for all four
modes of λH; we first prove some universally applicable metatheo-
retical properties.

A.1 Generic metatheory
A.1 Lemma [Weakening]: If Γ1,Γ2 `m e : T and `m T ′ and x
is fresh, then `m Γ1, x :T ′,Γ2 and Γ1, x :T ′,Γ2 `m e : T .

A.2 Lemma [Substitution]: If Γ1, x :T ′,Γ2 `m e : T and ∅ `m
e ′ : T ′, then Γ1,Γ2 `m e[e ′/x] : T and `m Γ1,Γ2.

A.3 Lemma [Regularity]: If Γ `m e : T , then `m Γ and `m T .

A.4 Lemma [Similarity is reflexive]: If ` T ‖ T .

Proof: By induction on T .

(T = {x :B | e}) By S REFINE.
(T = T1→T2) By S FUN and the IHs.

�

A.5 Lemma [Similarity is symmetric]: If ` T1 ‖ T2, then `
T2 ‖ T1.

Proof: By induction on the similarity derivation.

(S REFINE) By S REFINE.
(S FUN) By S FUN and the IHs.

�

A.6 Lemma [Similarity is transitive]: If ` T1 ‖ T2 and ` T2 ‖
T3, then ` T1 ‖ T3.

Proof: By induction on the derivation of ` T1 ‖ T2.

(S REFINE) The other derivation must also be by S REFINE;
by S REFINE.

(S FUN) The other derivation must also be by S FUN; by
S FUN and the IHs.

�

A.7 Lemma [Well formed type sets have similar indices]:
If `m S ‖ T1 ⇒ T2 then ` T1 ‖ T2.

Proof: Immediate, by inversion. �

A.8 Lemma [Type set well formedness is symmetric]: `m a ‖
T1 ⇒ T2 iff `m a ‖ T2 ⇒ T1 for all m 6= E.

Proof: We immediately have `m T1 and `m T2, and ` T1 ‖ T2

iff ` T2 ‖ T1 by Lemma A.5.
If m = C or m = F, then by A NONE and symmetry of

similarity (Lemma A.5.
If m = H, then let T ∈ S be given. The `H T premises hold

immediately; we are then done by transitivity (Lemma A.6) and
symmetry (Lemma A.5) of similarity (` T ‖ T1 iff ` T ‖ T2

when ` T1 ‖ T2). �

A.9 Lemma [Type set well formedness is transitive]: If ` T1 ‖
T2 and `m a ‖ T2 ⇒ T3 and `m T1 and m 6= E then
`m a ‖ T1 ⇒ T3.

Proof: We immediately have `m T1 and `m T3; we have ` T1 ‖
T3 by transitivity of similarity (Lemma A.6).

If m = C or m = F, we are done immediately by A NONE.
If, on the other hand, m = H, let T ∈ S be given. We know that

`H T and ` T ‖ T2; by symmetry (Lemma A.5) and transitivity
(Lemma A.6) of similarity, we are done by A TYPESET. �

A.10 Lemma [Reducing type sets]: If `m S ‖ T1 ⇒ T3 then
`m (S \ T2) ‖ T1 ⇒ T3.

Proof: All of the T ∈ S remain well formed and similar to T1

and T3, as do the well formedness and similarity relations for T1

and T3. �

A.2 Classic type soundness
A.11 Lemma [Classic determinism]: If e −→C e1 and e −→C

e2 then e1 = e2.

Proof: By induction on the first evaluation derivation. �

A.12 Lemma [Classic canonical forms]: If ∅ `C e : T and
valC e then:

– If T = {x :B | e ′}, then e = k and ty(k) = B and
e ′[e/x] −→∗C true.

– If T = T1→T2, then either e = λx :T . e or e =
〈T11→T12

•⇒T21→T22〉l e ′.

A.13 Lemma [Classic progress]: If ∅ `C e : T , then either:

1. resultC e , i.e., e = ⇑l or valC e; or
2. there exists an e ′ such that e −→C e ′.

Proof: By induction on the typing derivation. �

A.14 Lemma [Classic preservation]: If ∅ `C e : T and e −→C

e ′, then ∅ `C e ′ : T .

Proof: By induction on the typing derivation. �

A.3 Forgetful type soundness
Just as we did for classic λH in Section A.2, we reuse the theorems
from Section A.1. Note that if e is a value in forgetful λH, it’s also
a value in classic λH, i.e., valF e implies valC e .

A.15 Lemma [Forgetful determinism]:
If e −→F e1 and e −→F e2 then e1 = e2.

Proof: By induction on the first evaluation derivation. �

A.16 Lemma [Forgetful canonical forms]: If ∅ `F e : T and
valF e then:

– If T = {x :B | e ′}, then e = k and ty(k) = B and
e ′[e/x] −→∗F true.

– If T = T1→T2, then either e = λx :T . e ′ or e =
〈T11→T12

•⇒T21→T22〉l λx :T11. e
′.

A.17 Lemma [Forgetful progress]: If ∅ `F e : T , then either:

1. resultF e is a result, i.e., e = ⇑l or valF e; or
2. there exists an e ′ such that e −→F e ′.

Proof: By induction on the typing derivation. �

A.18 Lemma [Forgetful preservation]: If ∅ `F e : T and
e −→F e ′ then ∅ `F e ′ : T .

Proof: By induction on the typing derivation. �

In addition to showing type soundness, we prove that a source
program (Definition 3.1) is well typed with m = F iff it is well
typed with m = C.

A.19 Lemma [Source program typing for forgetful λH]:
Source programs are well typed in C iff they are well typed in F,
i.e.:

– Γ `C e : T as a source program iff Γ `F e : T as a source
program.

DRAFT 13 2014/7/14

– `C T as a source program iff `F T as a source program.
– `C Γ as a source program iff `F Γ as a source program.

Proof: By mutual induction on e , T , and Γ. �

A.4 Heedful type soundness
A.20 Lemma [Heedful canonical forms]: If ∅ `H e : T and
valH e then:

– If T = {x :B | e ′}, then e = k and ty(k) = B and
e ′[e/x] −→∗H true.

– If T = T1→T2, then either e = λx :T . e ′ or e =

〈T11→T12
S⇒T21→T22〉l λx :T11. e

′.

A.21 Lemma [Heedful progress]: If ∅ `H e : T , then either:

1. resultH e , i.e., e = ⇑l or valH e; or
2. there exists an e ′ such that e −→H e ′.

Proof: By induction on the typing derivation. �

Before proving preservation, we must establish some properties
about type sets: type sets as merged by E CASTMERGE are well
formed; the dom and cod operators take type sets of function types
and produce well formed type sets.

A.22 Lemma [Merged type sets are well formed]: If `H S1 ‖
T1 ⇒ T2 and `H S2 ‖ T2 ⇒ T3 then `H (S1 ∪ S2 ∪ {T2}) ‖
T1 ⇒ T3.

Proof: By transitivity of similarity, we have ` T1 ‖ T3. We have
`H T1 and `H T3 from each of the A TYPESET derivations, so it
remains to show the premises for each T ∈ S.

Let T ∈ (S1 ∪ S2 ∪ {T2}). We have ` T ‖ T1 and `H T
(a) by assumption and symmetry (Lemma A.5) if T = T2; and
(b) by A TYPESET and symmetry and transitivity (Lemma A.6) if
T ∈ S1 ∪ S2. We can therefore apply A TYPESET, and we are
done. �

A.23 Lemma [Domain type set well formedness]: If `H S ‖
T11→T12 ⇒ T21→T22 then `H dom(S) ‖ T21 ⇒ T11.

Proof: First, observe that for every T ∈ S, we know that ` T ‖
T11→T12, so each Ti = Ti 1→Ti 2 by inversion. This means that
dom(S) is well defined.

By inversion of similarity and type well formedness, we have
` T11 ‖ T21 and `H T11 and `H T21. By symmetry of similarity,
we have ` T21 ‖ T11 (Lemma A.5).

Let Ti 1 ∈ dom(S) by given. We know that there exists some
Ti 2 such that Ti 1→Ti 2 ∈ S and ` Ti 1→Ti 2 ‖ T11→T12 and
`H Ti 1→Ti 2. By inversion, we find ` Ti 1 ‖ T11 and `H Ti 1.
By transitivity of similarity (Lemma A.6), we have ` Ti 1 ‖ T21,
and we are done by A TYPESET. �

A.24 Lemma [Codomain type set well formedness]: If `H S ‖
T11→T12 ⇒ T21→T22 then `H cod(S) ‖ T12 ⇒ T22.

Proof: First, observe that for every T ∈ S, we know that ` T ‖
T11→T12, so each Ti = Ti 1→Ti 2 by inversion. This means that
dom(S) is well defined.

By inversion of similarity and type well formedness, we have
` T12 ‖ T22 and `H T12 and `H T22.

Let Ti 2 ∈ dom(S) by given. We know that there exists some
Ti 2 such that Ti 1→Ti 2 ∈ S and ` Ti 1→Ti 2 ‖ T12→T12 and
`H Ti 1→Ti 2. By inversion, we find ` Ti 2 ‖ T12 and `H Ti 2.
We are done by A TYPESET. �

A.25 Lemma [Heedful preservation]: If ∅ `H e : T and e −→H

e ′ then ∅ `H e ′ : T .

Proof: By induction on the typing derivation. �

Just as we did for forgetful λH in (Section A.3), we show that
source programs are well typed heedfully iff they are well typed
classically—iff they are well typed forgetfull (Lemma A.19). that
is, source programs are valid staring points in any mode.

A.26 Lemma [Source program typing for heedful λH]:
Source programs are well typed in C iff they are well typed in H,
i.e.:

– Γ `C e : T as a source program iff Γ `H e : T as a source
program.

– `C T as a source program iff `H T as a source program.
– `C Γ as a source program iff `H Γ as a source program.

Proof: By mutual induction on e , T , and Γ. �

A.5 Eidetic type soundness
A.27 Lemma [Determinism of eidetic λH]: If e −→E e1 and
e −→E e2 then e1 = e2.

Proof: By induction on the first evaluation derivation. In every
case, only a single step can be taken. �

A.28 Lemma [Eidetic canonical forms]: If ∅ `E e : T and
valE e then:

– If T = {x :B | e ′}, then e = k and ty(k) = B and
e ′[e/x] −→∗E true.

– If T = T21→T22, then either e = λx :T . e ′ or e =
〈T11→T12

c1 7→c2⇒ T21→T22〉• λx :T11. e
′.

A.29 Lemma [Eidetic progress]: If ∅ `E e : T , then either:

1. resultE e , i.e., e = ⇑l or valE e; or
2. there exists an e ′ such that e −→E e ′.

Proof: By induction on the typing derivation. �

A.30 Lemma [Extended refinement lists are well formed]:
If `E {x :B | e} and `E r ‖ {x :B | e1} ⇒ {x :B | e2} then
`E {x :B | e}l B r ‖ {x :B | e1} ⇒ {x :B | e2}.
Proof: By cases on the rule used.

(A REFINE) If r is just the type {x :B | e} with some other
blame label, then directly by A REFINE and the assumption. If not,
there is more than one type in r .

If e = e2, then r \ {x :B | e} isn’t well formed on its own,
but adding {x :B | e}l makes it so. If not, then we know that
r\{x :B | e} is well formed, and so is its extensions by assumption.

(A FUN) Contradictory.

�

A.31 Lemma [Merged coercions are well formed]: If `E c1 ‖
T1 ⇒ T2 and `E c2 ‖ T2 ⇒ T3 then `E c1 B c2 ‖ T1 ⇒ T3.

Proof: By induction on c1’s typing derivation.

(A REFINE) By the IH, Lemma A.30, and A REFINE.
(A FUN) By the IHs and A FUN.

�

A.32 Lemma [coerce generates well formed coercions]:
If ` T1 ‖ T2 then `E coerce(T1,T2, l) ‖ T1 ⇒ T2.

Proof: By induction on the similarity derivation.

(S REFINE) By A REFINE, with coerce({x :B | e1}, {x :B |
e2}, l) = {x :B | e2}l .

(S FUN) By A FUN and the IHs.

�

DRAFT 14 2014/7/14

A.33 Lemma [Eidetic preservation]: If ∅ `E e : T and e −→E

e ′ then ∅ `E e ′ : T .

Proof: By induction on the typing derivation. �

A.34 Lemma [Source program typing for eidetic λH]: Source
programs are well typed in C iff they are well typed in E, i.e.:

– Γ `C e : T as a source program iff Γ `E e : T as a source
program.

– `C T as a source program iff `E T as a source program.
– `C Γ as a source program iff `E Γ as a source program.

Proof: By mutual induction on e , T , and Γ. �

B. Proofs of space-efficiency soundness
This appendix contains the proofs relating classic λH to each other
mode: forgetful, heedful, and eidetic.

B.1 Relating classic and forgetful manifest contracts
If we evaluate a λH term with the classic semantics and find a
value, then the forgetful semantics finds a similar value—identical
if they’re constants. Since forgetful λH drops some casts, some
terms reduce to blame in classic λH while they reduce to values
in forgetful λH.

The relationship between classic and forgetful λH is blame-
inexact, to borrow the terminology of Greenberg et al. [11]: we
define an asymmetric logical relation in Figure 12, relating classic
values to forgetful values—and everything to classic blame. The
proof proceeds largely like that of Greenberg et al. [11]: we de-
fine a logical relation on terms and an inductive invariant relation
on types, prove that casts between related types are logically re-
lated, and then show that well typed source programs are logically
related.

Before we explain the logical relation proof itself, there is one
new feature of the proof that merits discussion: we need to derive
a congruence principle for casts forgetful λH. When proving that
casts between related types are related (Lemma B.2), we want
to be able to reason with the logical relation—which involves
reducing the cast’s argument to a value. But if e −→∗F e ′ such
that resultF e ′, how to 〈T1

•⇒T2〉l e and 〈T1
•⇒T2〉l e ′ relate? If

e ′ = ⇑l ′ is blame, then it may be that 〈T1
•⇒T2〉l e reduces to

a value while 〈T1
•⇒T2〉l ⇑l ′ propagates the blame. But if e ′ is

a value, then both casts reduce to the same value. We show this
property first for a single step e −→F e ′, and then lift it to many
steps.

B.1 Lemma [Cast congruence (single step)]: If

– ∅ `F e : T1 and and `F ∅ ‖ T1 ⇒ T2 (and so ∅ `F
〈T1

•⇒T2〉l e : T2),
– e −→F e1 (and so ∅ `F e1 : T1),
– 〈T1

•⇒T2〉l e1 −→∗F e2, and
– valF e2

then 〈T1
•⇒T2〉l e −→∗F e2.

Proof: By cases on the step e −→F e1. There are three groups
of reductions: straightforward merge-free reductions, merging re-
ductions (the interesting cases, where a reduction step taken in e
has an exposed cast), and (contradictory) reductions where blame
is raised.

None of the blame propagation rules (i.e., E *RAISE*) can
occur: we would have e1 = ⇑l ′, and then 〈T1

•⇒T2〉l ⇑l ′ doesn’t
reduce to a value, contradicting our assumption.

�

Value rules e1 ∼F e2 : T

k ∼F k : {x :B | e} ⇐⇒ ty(k) = B ∧ e[k/x] −→∗F true
e11 ∼F e21 : T1→T2 ⇐⇒ valC e1 ∧ valF e2 ∧

∀e12 ∼F e22 : T1. e11 e12 'F e21 e22 : T2

Term rules e1 'F e2 : T

e1 'F e2 : T ⇐⇒ e1 −→∗C ⇑l ∨

 e1 −→∗C e′1 ∧ valC e′1
e2 −→∗F e′2 ∧ valF e′2
e′1 ∼F e′2 : T


Type rules T1 ∼F T2

{x :B | e1} ∼F {x :B | e2} ⇐⇒
∀e′1 ∼F e′2 : {x :B | true}. e1[e′1/x] 'F e2[e′2/x] : {x :Bool | true}
T11→T12 ∼F T21→T22 ⇐⇒ T11 ∼F T21 ∧ T12 ∼F T22

Closing substitutions and open terms Γ |=F δ

Γ ` e1 'F e2 : T

Γ |=F δ ⇐⇒ ∀x ∈ dom(Γ). δ1(x) ∼F δ2(x) : Γ(x)
Γ ` e1 'F e2 : T ⇐⇒ ∀Γ |=F δ. δ1(e1) 'F δ2(e2) : T

Figure 12. Asymmetric logical relation between classic λH and
forgetful λH

Once we have cast congruence for a single step, a straightfor-
ward induction gives us reasoning principle applicable to many
steps.

We define the logical relation in Figure 12. It is defined in a
split style, with separate definitions for values and terms. Note that
terms that classically reduce to blame are related to all forgetful
terms, but terms that classically reduce to values reduce forgetfully
to similar values. We lift these closed relations on values and
terms to open terms by means of dual closing substitutions. As
in Greenberg et al. [11], we define an inductive invariant to relate
types, using it to show that casts between related types on related
values yield related values, i.e., casts are applicative (Lemma B.2).
One important subtle technicality is that the type indices of this
logical relation are forgetful types—in the constant case of the
value relation, we evaluate the predicate in the forgetful semantics.
We believe the choice is arbitrary, but have not tried the proof using
classic type indices.

B.2 Lemma [Relating classic and forgetful casts]: If T11 ∼F

T21 and T12 ∼F T22 and ` T11 ‖ T12, then forall e1 ∼F e2 : T21,
we have 〈T11

•⇒T12〉l e1 'F 〈T21
•⇒T22〉l

′
e2 : T22.

Proof: By induction on the sum of the heights of T21 and T22. �

B.3 Lemma [Relating classic and forgetful source programs]:

1. If Γ `C e : T as a source program then Γ ` e 'F e : T .
2. If `C T as a source program then T ∼F T .

Proof: By mutual induction on the typing derivations.
�

B.2 Relating classic and heedful manifest contracts
Heedful λH reorders casts, so we won’t necessarily get the same
blame as we do in classic λH. We can show, however, that they
blame the same amount: heedful λH raises blame if and only if
classic λH does, too. We define a blame-inexact, symmetric logical
relation.

DRAFT 15 2014/7/14

The proof follows the same scheme as the proof for forgetful λH
in Section B.1: we first prove a cast congruence principle; then we
define a logical relation relating classic and heedful λH; we prove
a lemma establishing a notion of applicativity for casts using an
inductive invariant grounded in the logical relation, and then use
that lemma to prove that well typed source programs are logically
related.

Cast congruence—that 〈T1
S⇒T2〉l e and 〈T1

S⇒T2〉l e1 behave
identically when e −→H e1—holds almost exactly. The pre- and
post-step terms may end blaming different labels, but otherwise
return identical values. Note that this cast congruence lemma (a)
has annotations other than •, and (b) is stronger than Lemma B.1,
since we not only get the same value out, but we also get blame
when the inner reduction yields blame—though the label may be
different. The potentially different blame labels in heedful λH’s
cast congruence principle arises because of how casts are merged:
heedful λH is heedful of types, but forgets blame labels.

B.4 Lemma [First-order casts don’t change their arguments]:
If 〈{x :B | e1}

S⇒{x :B | e2}〉l k −→∗H e and valH e then e = k .

Proof: By induction on the size of S. �

B.5 Lemma [Determinism of heedful λH]: If e −→H e1 and
e −→H e2 then e1 = e2.

Proof: By induction on the first evaluation derivation. In every
case, only a single step can be taken. Critically, E CHECKSET uses
the choose function, which makes some deterministic choice. �

Heedful λH’s cast congruence proof requires an extra principle.
We first show that casting is idempotent: we can safely remove the
source type from a type set.

B.6 Lemma [Idempotence of casts]:
If ∅ `H 〈{x :B | e1}

S⇒{x :B | e2}〉l k : {x :B | e2} and
∅ `H k : {x :B | e3} then for all resultH e , then:
(a) 〈{x :B | e1}

S⇒{x :B | e2}〉l k −→∗H e iff

(b) 〈{x :B | e1}
S\{x :B|e3}⇒ {x :B | e2}〉l k −→∗H e .

Proof: By induction on the size of S, with the terms in lock step
until choose produces {x :B | e3} and we can discharge its check
with the fact that e3[k/x] −→∗H true.

�

We need strong normalization to prove cast congruence: if we
reorder checks, we need to know that reordering checks doesn’t
change the observable behavior. We define a unary logical relation
to show strong normalization in Figure 13. We assume throughout
at the terms are well typed at their indices: e ∈ [[T]] implies
∅ `H e : T and |= T implies `H T and |= S ‖ T1 ⇒ T2

implies `H S ‖ T1 ⇒ T2 and Γ |= e : T implies Γ `H e :
T by definition. Making this assumption simplifies many of the
technicalities. First, typed terms stay well typed as they evaluate
(by preservation, Lemma A.25), so a well typed relation allows
us to reason exclusively over typed terms. Second, it allows us to
ignore the refinements in our relation, essentially using the simple
type structure. After proving cast congruence, we show that all well
typed terms are in fact in the relation, i.e., that all heedful terms
normalize.

B.7 Lemma [Expansion and contraction]: If e1 −→∗H e2 then
e1 ∈ [[T]] iff e2 ∈ [[T]].

Proof: By induction on T .

(T = {x :B | e ′′}) By determinism (Lemma B.5).
(T = T1→T2) Given some e ′ ∈ [[T1]], we must show that

e1 e ′ ∈ [[T2]] iff e2 e ′ ∈ [[T2]]. We have e1 e ′ −→∗H e2 e ′ by

Normalizing closed terms e ∈ [[T]]

e ∈ [[{x :B | e}]] ⇐⇒ e −→∗H ⇑l ∨
e −→∗H k ∧ ty(k) = B

e ∈ [[T1→T2]] ⇐⇒ ∀e′ ∈ [[T1]]. resultH e′ ⇒ e e′ ∈ [[T2]]

Normalizing open terms Γ |= e : T Γ |= σ

Γ |= e : T ⇐⇒ ∀σ. Γ |= σ ⇒ σ(e) ∈ [[T]]
Γ |= σ ⇐⇒ ∀x :T ∈ Γ. σ(x) ∈ [[T]]

Normalizing types and type sets |= T |= S ‖ T1 ⇒ T2

∀k . ty(k) = B implies e[k/x] ∈ [[{x :Bool | true}]]
|= {x :B | e}

SWF REFINE

|= T1 |= T2

|= T1→T2
SWF FUN

` T1 ‖ T2 |= T1 |= T2

∀T ∈ S. |= T ` T ‖ T1

|= S ‖ T1 ⇒ T2
SWF TYPESET

Figure 13. Strong normalization for heedful λH

induction on the length of the evaluation derivation and E APPL,
so we are done by the IH on T2.

�

B.8 Lemma [Blame inhabits every type]: ⇑l ∈ [[T]] for all T .

Proof: By induction on T .

(T = {x :B | e ′′}) By definition.
(T = T1→T2) By the IH, ⇑l ′ ∈ [[T1]]. We must show that

⇑l ⇑l ′ ∈ [[T2]]. This term steps to ⇑l by E APPRAISEL, and then
we are done by contraction (Lemma B.7).

�

B.9 Lemma [Strong normalization]: If e ∈ [[T]] then e −→∗H
e ′ uniquely such that resultH e ′.

Proof: Uniqueness is immediate by determinism. We show nor-
malization by induction on T , observing that blame inhabits every
type. �

B.10 Lemma [Cast congruence (single step)]: If

– e ∈ [[T1]] and |= S ‖ T1 ⇒ T2 (and so ∅ `H 〈T1
•⇒T2〉l e :

T2),
– e −→H e1 (and so ∅ `H e1 : T1),
– 〈T1

S⇒T2〉l e1 −→∗H e2, and
– resultH e2

then 〈T1
S⇒T2〉l e −→∗H ⇑l ′ if e2 = ⇑l or to e2 itself if valH e2.

Proof: By cases on the step taken; the proof is as for forgetful
λH (Lemma B.1), though we need to use strong normalization to
handle the reorderings. �

B.11 Lemma [Cast congruence]: If

– ∅ |= e : T1 and |= S ‖ T1 ⇒ T2 (and so ∅ `H
〈T1

S⇒T2〉l e : T2),
– e −→∗H e1 (and so ∅ `H e1 : T1),
– 〈T1

S⇒T2〉l e1 −→∗H e2, and
– resultH e2

DRAFT 16 2014/7/14

Value rules e1 ∼H e2 : T

k ∼H k : {x :B | e} ⇐⇒ ty(k) = B ∧ e[k/x] −→∗H true
e11 ∼H e21 : T1→T2 ⇐⇒ valC e1 ∧ valH e2 ∧

∀e12 ∼H e22 : T1. e11 e12 'H e21 e22 : T2

Term rules e1 'H e2 : T

e1 'H e2 : T
⇐⇒(

e1 −→∗C ⇑l ∧
e2 −→∗H ⇑l

′

)
∨

e1 −→∗C e′1 ∧ valC e′1 ∧
e2 −→∗H e′2 ∧ valH e′2 ∧
e′1 ∼H e′2 : T


Type rules T1 ∼H T2

{x :B | e1} ∼H {x :B | e2} ⇐⇒
∀e′1 ∼H e′2 : {x :B | true}. e1[e′1/x] 'H e2[e′2/x] : {x :Bool | true}
T11→T12 ∼H T21→T22 ⇐⇒ T11 ∼H T21 ∧ T12 ∼H T22

Closing substitutions and open terms Γ |=H δ

Γ ` e1 'H e2 : T

Γ |=H δ ⇐⇒ ∀x ∈ dom(Γ). δ1(x) ∼H δ2(x) : Γ(x)
Γ ` e1 'H e2 : T ⇐⇒ ∀Γ |=H δ. δ1(e1) 'H δ2(e2) : T

Figure 14. Blame-inexact, symmetric logical relation between
classic λH and heedful λH

then 〈T1
S⇒T2〉l e −→∗H ⇑l ′ if e2 = ⇑l or to e2 itself if valH e2.

Proof: By induction on the derivation e −→∗H e1, using the
single-step cast congruence (Lemma B.10). �

B.12 Lemma [Strong normalization of casts]: If |= S ‖ T1 ⇒
T2 and e ∈ [[T1]] then 〈T1

S⇒T2〉l e ∈ [[T2]].

Proof: By induction on the sum of the heights of T1 and T2. �

To be able to use our semantic cast congruence lemma, we must
show that all well typed heedful λH terms are in the relation we
define; this proof is standard.

B.13 Lemma [Strong normalization of heedful terms]:

– Γ `H e : T implies Γ |= e : T ,
– `H T implies |= T , and
– `H S ‖ T1 ⇒ T2 implies |= S ‖ T1 ⇒ T2.

Proof: By mutual induction on the typing derivations. �

We define the logical relation in Figure 14; it follows the gen-
eral scheme of forgetful λH’s logical relation (Figure 12). The main
difference is that this relation is symmetric: classic and heedful λH
yield blame or values iff the other one does, thought the blame la-
bels may be different. The formulations are otherwise the same,
and the proof proceeds similarly—though heedful λH’s more com-
plicated cast merging leads to some more intricate stepping in the
cast lemma.

B.14 Lemma [Value relation relates only values]: If e1 ∼H e2 :
T then valC e1 and valH e2.

Proof: By induction on T . We have e1 = e2 = k when T =
{x :B | e} (and so we are done by V CONST). When T =
T1→T2, we have the value derivations as assumptions. �

B.15 Lemma [Relation implies similarity]: If T1 ∼H T2 then
` T1 ‖ T2.

Proof: By induction on T1, using S REFINE and S FUN. �

B.16 Lemma [Relating classic and heedful casts]: If T11 ∼H

T21 and T12 ∼H T22 and ` T11 ‖ T12, then forall e1 ∼H e2 :

T21, we have 〈T11
•⇒T12〉l e1 'H 〈T21

•⇒T22〉l
′
e2 : T22.

Proof: By induction on the sum of the heights of T21 and T22. �

B.17 Lemma [Relating classic and heedful source programs]:

1. If Γ `C e : T as a source program then Γ ` e 'H e : T .
2. If `C T as a source program then T ∼H T .

Proof: By mutual induction on the typing derivations.
�

We have investigated two alternatives to the formulation here:
type set optimization and invariants that clarify the role of type sets.

First, we can imagine a system that optimizes the type set of
〈T1

S⇒T2〉l such that T1 and T2 don’t appear in S—taking ad-
vantage of idempotence not only for the source type (Lemma B.6)
but also for the target type. This change complicates the theory
but doesn’t give any stronger theorems. Nevertheless, such an opti-
mization would be a sensible addition to an implementation.

Second, our proof relates source programs, which start with
empty annotations. In fact, all of the reasoning about type sets
is encapsulated in our proof cast congruence. We could define
a function from heedful λH to classic λH that unrolls type sets
according to the choose function. While this proof would offer a
direct understanding of heedful λH type sets in terms of the classic
semantics, it wouldn’t give us a strong property—it degenerates to
our proof in the empty type set case.

B.3 Relating classic and eidetic manifest contracts
B.18 Lemma [Idempotence of coercions]: If ∅ `E k : {x :B |
e1} and `E r1 B r2 ‖ {x :B | e1} ⇒ {x :B | e2}, then for all

resultE e , it is the case that 〈{x :B | e1}
r1B(r2\{x :B|e1})⇒ {x :B |

e2}〉• k −→∗E e iff 〈{x :B | e1}
r1Br2⇒ {x :B | e2}〉• k −→∗E e .

Proof: By induction on their evaluation derivations: the only dif-
ference is that the latter derivation performs an extra check that
e1[k/x] −→∗E true—which we already know to hold. �

As before, cast congruence is the key lemma in our proof—
in this case, the strongest property we have: reduction to identical
results.

B.19 Lemma [Cast congruence (single step)]: If

– ∅ `E e1 : T1 and `E c ‖ T1 ⇒ T2 (and so ∅ `E
〈T1

c⇒T2〉• e1 : T2),
– e1 −→E e2 (and so ∅ `E e2 : T1),

then for all resultE e , we have 〈T1
c⇒T2〉• e1 −→∗E e iff

〈T1
c⇒T2〉• e2 −→∗E e .

Proof: By cases on the step taken to find e1 −→E e2. �

Our proof strategy is as follows: we show that the casts be-
tween related types are applicative, and then we show that well
typed source programs in classic λH are logically related to their
translation. Our definitions are in Figure 15. Our logical relation is
blame-exact. Like our proofs relating forgetful and heedful λH to
classic λH, we use the space-efficient semantics in the refinement
case and use space-efficient type indices.

DRAFT 17 2014/7/14

Value rules e1 ∼E e2 : T

k ∼E k : {x :B | e} ⇐⇒ ty(k) = B ∧ e[k/x] −→∗E true
e11 ∼E e21 : T1→T2 ⇐⇒ valC e1 ∧ valE e2 ∧

∀e12 ∼E e22 : T1. e11 e12 'E e21 e22 : T2

Term rules e1 'E e2 : T

e1 'E e2 : T
⇐⇒(

e1 −→∗C ⇑l ∧
e2 −→∗E ⇑l

)
∨

e1 −→∗C e′1 ∧ valC e′1 ∧
e2 −→∗E e′2 ∧ valE e′2 ∧
e′1 ∼E e′2 : T


Type rules T1 ∼E T2

{x :B | e1} ∼E {x :B | e2} ⇐⇒
∀e′1 ∼E e′2 : {x :B | true}. e1[e′1/x] 'E e2[e′2/x] : {x :Bool | true}
T11→T12 ∼E T21→T22 ⇐⇒ T11 ∼E T21 ∧ T12 ∼E T22

Closing substitutions and open terms Γ |=E δ

Γ ` e1 'E e2 : T

Γ |=E δ ⇐⇒ ∀x ∈ dom(Γ). δ1(x) ∼E δ2(x) : Γ(x)
Γ ` e1 'E e2 : T ⇐⇒ ∀Γ |=E δ. δ1(e1) 'E δ2(e2) : T

Figure 15. Blame-exact, symmetric logical relation between clas-
sic λH and eidetic λH

B.20 Lemma [Casts related to coercions are logically related]:
If T1 ∼E T ′1 and T2 ∼E T ′2 then for all e1 ∼E e2 : T1,
〈T1

•⇒T2〉l e1 'E 〈T ′1
•⇒T ′2〉l e2 : T2.

Proof: By induction on the invariant relation, using coercion con-
gruence in the function case when e2 is a function proxy. �

B.21 Lemma [Relating classic and eidetic source programs]:

1. If Γ `C e : T as a source program then Γ ` e 'E e : T .
2. If `C T as a source program then T ∼E T .

Proof: By mutual induction on the typing derivations. �

C. Proofs of bounds for space-efficiency
This section contains our definitions for collecting types in a pro-
gram and the corresponding proof of bounded space consumption
(for all modes at once).

We define a function collecting all of the distinct types that
appear in a program in Figure 16. If the type T = {x :Int | x ≥
0}→{y :Int | y 6= 0} appears in the program e , then types(e)
includes the type T itself along with its subparts {x :Int | x ≥ 0}
and {y :Int | y 6= 0}.
C.1 Lemma: types(e[e ′/x]) ⊆ types(e) ∪ types(e ′)

Proof: By induction on e . �

C.2 Lemma: types(T1) ∪ types(mergem(T1, a1,T2, a2,T3)) ∪
types(T3) ⊆ types(T1) ∪ types(a1) ∪ types(T2) ∪ types(a2) ∪
types(T3)

Proof: By cases on each, but observing that the merged annotation
is always no bigger than the original, and that the type T2 may or
may not vanish. �

C.3 Lemma: types(dom(a)) ⊆ types(a)

Term type extraction types(e) : P(T)

types(x) = ∅
types(k) = ∅

types(λx :T . e) = types(T) ∪ types(e)

types(〈T1
a⇒T2〉l e) = types(T1) ∪ types(T2) ∪

types(a) ∪ types(e)
types(e1 e2) = types(e1) ∪ types(e2)

types(op(e1, . . . , en)) =
⋃

1≤i≤n types(ei)

types(〈{x :B | e1}, e2, k〉l) = types({x :B | e1}) ∪ types(e2)
types(〈{x :B | e1}, s, r , k , e〉•) =

types({x :B | e1}) ∪ types(r) ∪ types(e)
types(⇑l) = ∅

Type, type set, and coercion type extraction

types(T) : P(T)

types({x :B | e}) = {{x :B | e}} ∪ types(e)
types(T1→T2) = {T1→T2} ∪

types(T1) ∪ types(T2)

types(a) : P(T)

types(•) = ∅
types(S) =

⋃
T∈S types(T)

types(nil) = ∅
types({x :B | e}l , r) = {{x :B | e}} ∪ types(r)

types(c1 7→ c2) = types(c1) ∪ types(c2)

Type height height(T)

height({x :B | e}) = 1
height(T1→T2) = 1 + maxi∈{1,2} height(Ti)

Figure 16. Type extraction and type height

Proof: This property is trivial when a = •.
When the annotation is a type set, for dom(S) to be defined,

every type in S must be a function type. So:

types(S) =
⋃

T∈S types(T)
=

⋃
T1→T2∈S types(T1→T2)

=
⋃

T1→T2∈S {T1→T2} ∪
types(T1) ∪ types(T2)

⊇
⋃

T1→T2∈S types(T1)
=

⋃
T∈types(dom(S)) types(T)

= types(dom(S))

Immediate when a = c1 7→ c2. �

C.4 Lemma: types(cod(a)) ⊆ types(a)

Proof: Similar to Lemma C.3. �

C.5 Lemma [Coercing types doesn’t introduce types]:
types(coerce(T1,T2, l)) ⊆ types(T1) ∪ types(T2)

Proof: By induction on T1 and T2. When they are refinements,
we have the coercion just being {x :B | e2}l . When they are
functions, by the IH. �

C.6 Lemma [Dropping types doesn’t introduce types]:
types(r \ {x :B | e}) ⊆ types(r)

Proof: By induction on r .

(r = nil) The two sides are immediately equal.

DRAFT 18 2014/7/14

(r = {x :B | e ′}l , r ′) If e 6= e ′, then the two are identical. If
not, then we have types(r ′) ⊆ types(r) immediately.

�

C.7 Lemma [Coercion merges don’t introduce types]:
types(r1 B r2) ⊆ types(r1) ∪ types(r2)

Proof: By induction on r1.

(r1 = nil) The two sides are immediately equal.
(r1 = {x :B | e}l , r ′1) Using Lemma C.6, we find:

types(r1 B r2) = {{x :B | e}} ∪
types(r ′1 B (r2 \ {x :B | e}))

⊆ {{x :B | e}} ∪ types(r ′1) ∪
types(r2 \ {x :B | e})

⊆ {{x :B | e}} ∪ types(r ′1) ∪ types(r2)
= types(r1) ∪ types(r2)

�

C.8 Lemma [Reduction doesn’t introduce types]: If e −→m

e ′ then types(e ′) ⊆ types(e).

Proof: By induction on the step taken. �

DRAFT 19 2014/7/14

	1 Introduction
	2 Function proxies
	3 Classic manifest contracts
	3.1 Core operational semantics
	3.2 Cast merges by example
	3.3 Type system
	3.4 Metatheory
	3.5 Overview

	4 Forgetful space efficiency
	5 Heedful space efficiency
	6 Eidetic space efficiency
	7 Soundness for space efficiency
	8 Bounds for space efficiency
	9 Related work
	10 Conclusion and future work
	A Proofs of type soundness
	A.1 Generic metatheory
	A.2 Classic type soundness
	A.3 Forgetful type soundness
	A.4 Heedful type soundness
	A.5 Eidetic type soundness

	B Proofs of space-efficiency soundness
	B.1 Relating classic and forgetful manifest contracts
	B.2 Relating classic and heedful manifest contracts
	B.3 Relating classic and eidetic manifest contracts

	C Proofs of bounds for space-efficiency

