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Abstract

Kleene algebras with tests (KATs) offer sound, complete,
and decidable equational reasoning about regularly struc-
tured programs. Interest in KATs has increased greatly since
NetKAT demonstrated how well extensions of KATs with
domain-specific primitives and extra axioms apply to com-
puter networks. Unfortunately, extending a KAT to a new
domain by adding custom primitives, proving its equational
theory sound and complete, and coming up with an efficient
implementation is still an expert’s task. Abstruse metatheory
is holding back KAT’s potential.

We offer a fast path to a łminimum viable modelž of a KAT,
formally or in code through our framework, Kleene algebra
modulo theories (KMT). Given primitives and a notion of
state, we can automatically derive a corresponding KAT’s
semantics, prove its equational theory sound and complete
with respect to a tracing semantics (programs are denoted as
traces of states), and derive a normalization-based decision
procedure for equivalence checking. Our framework is based
on pushback, a generalization of weakest preconditions that
specifies how predicates and actions interact. We offer sev-
eral case studies, showing tracing variants of theories from
the literature (bitvectors, NetKAT) along with novel com-
positional theories (products, temporal logic, and sets). We
derive new results over unbounded state, reasoning about
monotonically increasing, unbounded natural numbers. Our
OCaml implementation closely matches the theory: users
define and compose KATs with the module system.

CCS Concepts: · Software and its engineering → For-

mal language definitions; Frameworks; Formal software

verification; Correctness; Automated static analysis; · Theory
of computation→ Regular languages.

Keywords: tracing semantics, algebraic models, verification,
program equivalence
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1 Introduction

Kleene algebra with tests (KAT) provides a powerful frame-
work for reasoning about regularly structured programs.
Modeling simple programs with while loops and beyond,
KATs can handle a variety of analysis tasks [2, 7, 11ś13, 36]
and typically enjoy sound, complete, and decidable equa-
tional theories. Interest in KATs has followed their success
in networking: NetKAT, a language for programming and
verifying Software Defined Networks (SDNs), is a remark-
ably successful concrete KAT [1], followed by many other
variations and extensions [4, 8, 22, 37, 38, 48].

What’s holding back KAT and its decidable equivalence
from applying in other domains? It’s hard to generate use-

ful, concrete instances of KAT. But defining concrete KATs
remains a challenging task even for KAT experts. To build
a custom KAT, one must craft custom domain primitives,
derive a collection of new domain-specific axioms, prove
the soundness and completeness of the resulting algebra,
and implement a decision procedure. For example, NetKAT’s
theory and implementation was developed over several pa-
pers [1, 23, 51], following a series of papers that resembled,
but did not use, the KAT framework [21, 29, 39, 44]. A pes-
simistic analysis concludes that making a domain-specific
KAT requires moving to an institution with a KAT expert!
Abstract KAT has not successfully transferred to other

domains. The conventional, abstract approach to KAT leaves
actions and predicates abstract, without any domain-specific
equations [15, 34, 40, 43]. Abstract KATs can’t do domain-
specific reasoning. Domain-specific knowledge must be en-
coded manually as additional equational assumptions, which
makes equivalence undecidable in general; decision pro-
cedures have limited support for reasoning over domain-
specific primitives and axioms [11, 32]. Applying KAT is hard
because existing work is too abstract, with challengingly tele-
graphic completeness proofs: normalization procedures are
implicit in the very terse proofs. Such concision makes it
hard for a domain expert to adapt KAT to their needs.
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Domain-specific KATs will find more general application
when it is possible to cheaply build and experiment with
them. Our goal is to democratize KATs, offering a general
framework for automatically deriving sound, complete, and
decidable KATs with tracing semantics for client theories.

By tracing semantics, we mean that programs are denoted
as traces of actions and states. Such a semantics is useful for
proving not just end-to-end properties (e.g., does the packet
arrive at the correct host?) but also more fine-grained ones
(e.g., does the packet traverse the firewall on the way?).

To demonstrate the effectiveness of our approach, we not
only reproduce results from the literature (e.g., tracing vari-
ants of finite-state KATs, like bit vectors and NetKAT), but
we also derive new KATs that have monotonically increasing,
unbounded state (e.g., naturals). The proof obligations of our
approach are relatively mild and our approach is composi-

tional: a client can compose smaller theories to form larger,
more interesting KATs than might be tractable by hand. Our
completeness proof corresponds directly to a modular equiv-
alence decision procedure; users compose KATs and their
decision procedures from theories specified as OCaml mod-
ules. We offer a fast path to a łminimum viable modelž for
those wishing to experiment with KATs.

1.1 What Is a KAT?

From a bird’s-eye view, a Kleene algebra with tests is a first-
order language with loops (the Kleene algebra) and interest-
ing decision making (the tests). Formally, a KAT consists of
two parts: a Kleene algebra ⟨0, 1,+, ·, ∗⟩ of łactionsž with an
embedded Boolean algebra ⟨0, 1,+, ·,¬⟩ of łpredicatesž. KATs
subsume While programs: the 1 is interpreted as skip, · as
sequence, + as branching, and ∗ for iteration.1 Simply adding
opaque actions and predicates gives us aWhile-like language,
where our domain is simply traces of the actions taken. For
example, if α and β are predicates and π and ρ are actions,
then the KAT term α ·π+¬α ·(β ·ρ)∗ ·¬β ·π defines a program
denoting two kinds of traces: either α holds and we simply
run π , or α doesn’t hold, and we run ρ until β no longer holds
and then run π . i.e., the set of traces of the form {π , ρ∗π }.
Translating the KAT term into a While program, we write:
if α then π else { while β do { ρ }; π }. Moving
from While to KAT, consider the following programÐa sim-
ple loop over two natural-valued variables i and j:

assume i<50; while (i<100) {i += 1;j += 2}; assert j>100

To model such a program in KAT, one replaces each concrete
test or action with an abstract representation. Let the atomic
test α represent the test i < 50, β represent i < 100, and
γ represent j > 100; the atomic actions p and q represent
the assignments i := i + 1 and j := j + 2, respectively. We

1KATs are more general, thoughÐguarded KAT [52] corresponds directly
to While programs, while KAT admits general parallel composition and
iteration.

can now write the program as the KAT expression α · (β · p ·
q)∗ · ¬β · γ . The complete equational theory of KAT makes
it possible to reason about program transformations and
decide equivalence between KAT terms. For example, KAT’s
theory that the original loop is equivalent to its unfolding:

α · (β · p · q)∗ · ¬β · γ ≡ α · (1 + β · p · q · (β · p · q)∗) · ¬β · γ

But there’s a catch: α and β and p and q are abstract. KATs
are naïvely propositional, with no model of the underlying
domain or the semantics of the abstract predicates and ac-
tions. For example, the fact that (j := j + 2 · j > 200) ≡

(j > 198 · j := j + 2) does not follow from the KAT axioms
and must be added manually to any proof as an equational
assumption. Yet the ability to reason about the equivalence
of programs in the presence of particular domains is criti-
cal for reasoning about real programs and domain-specific
languages. Unfortunately, it remains an expert’s task to ex-
tend the KAT with new domain-specific axioms, provide
new proofs of soundness and completeness, and develop the
corresponding implementation [1, 4, 8, 28, 35].
As an example of such a domain-specific KAT, NetKAT

models packet forwarding in computer networks as KAT
terms. Devices in a network must drop or permit packets
(tests), update packets by modifying their fields (actions), and
iteratively pass packets to and from other devices (loops): a
network is the logical crossbar in; (p; t)∗;p; out, where p is
a policy, t models the network topology and in and out are
edge predicates. NetKAT extends KAT with two actions and
one predicate: an action to write to packet fields, f ← v ,
where we write value v to field f of the current packet; an
action dup, which records a packet in a history log; and a
field matching predicate, f = v , which determines whether
the field f of the current packet is set to the value v . Each
NetKAT program is denoted as a function from a packet
history to a set of packet histories. For example, the program:

dstIP← 192.168.0.1 · dstPort← 4747 · dup

takes a packet history as input, updates the current packet to
have a new destination IP address and port, and then records
the current packet state. The original NetKAT paper defines
a denotational semantics not just for its primitive parts, but
for the various KAT operators; they explicitly restate the
KAT equational theory along with custom axioms for the
new primitive forms, prove the theory’s soundness, and then
devise a novel normalization routine to reduce NetKAT to
an existing KAT with a known completeness result. Later
papers [23, 51] then developed the NetKAT automata theory
used to compile NetKAT programs into forwarding tables
and to verify networks. NetKAT’s power is costly: one must
prove metatheorems and develop an implementationÐa high
bar to meet for those hoping to apply KAT in their domain.
We aim to make it easier to define new KATs. Our the-

oretical framework and its corresponding implementation
allow for quick and easy composition of sound and complete
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Syntax

α ::= x > n π ::= incx | x := n sub(x > n) = {x > m | m ≤ n}

Semantics

n ∈ N x ∈ V State = V → N

pred(x > n, t) = last(t)(x) > n

act(incx ,σ ) = σ [x 7→ σ (x) + 1] act(x := n,σ ) = σ [x 7→ n]

Weakest precondition

x := n · (x > m)WP (n > m)

incy · (x > n)WP (x > n) incx · (x > 0)WP 1

incx · (x > n)WP (x > n − 1) when n , 0

Axioms

¬(x > n) · (x > m) ≡ 0 when n ≤ m GT-Contra

x := n · (x > m) ≡ (n > m) · x := n Asgn-GT

(x > m) · (x > n) ≡ (x > max(m,n)) GT-Min

incy · (x > n) ≡ (x > n) · incy GT-Comm

incx · (x > n) ≡ (x > n − 1) · incx when n > 0 Inc-GT

incx · (x > 0) ≡ incx Inc-GT-Z

Figure 1. IncNat, increasing naturals

KATs with normalization-based decision procedures when
given arbitrary domain-specific theories. Our framework,
which we call Kleene algebras modulo theories (KMT) af-
ter the objects it produces, allows us to derive metatheory
and implementation for KATs based on a given theory. The
KMT framework obviates the need to deeply understand
KAT metatheory and implementation for a large class of ex-
tensions; a variety of higher-order theories allow language
designers to compose new KATs from existing ones, allowing
them to rapidly prototype their KAT theories.

1.2 An Example Instance: Incrementing Naturals

We can model programs like the While program over i and
j from earlier by introducing a new client theory for natu-
ral numbers (Fig. 1). First, we extend the KAT syntax with
actions x := n and incx (increment x) and a new test x > n

for variables x and natural number constants n. Next, we de-
fine the client semantics. We fix a set of variables,V , which
range over natural numbers, and the program state σ maps
from variables to natural numbers. Primitive actions and
predicates are interpreted over the state σ by the act and
pred functions (where t is a trace of states).

Proof obligations. Our framework takes a client theory
and produces a KAT, but what must one provide in order to
know that the generated KAT is deductively complete, or
to derive an implementation? We require, at a minimum, a
description of the theory’s primitive predicates and actions
along with how these apply to some notion of state. We call
these parts the client theory (Fig. 1). The resulting KAT is a
Kleene algebra modulo theory (KMT).

Our framework hinges on an operation relating predicates
and operations called pushback. Pushback is a generalization
of weakest preconditions, built out of a notion of weakest
preconditions for each pair of primitive test and action. Ac-
cordingly, client theories must define a weakest precondi-
tions relation WP along with axioms that are sufficient to
justify WP. The WP relation provides a way to compute the
weakest precondition for any primitive action and test: we
write π · α WP a to mean that π · α ≡ a · π . For example, the
weakest precondition of incx ·x > n is x > n−1whenn is not
zero; the weakest preconditoin of x := n · (x > m) is n > m,
which is statically either 1 (when the constant n is greater
than the constantm) or 0 (otherwise). The client theory’s
WP should have two properties: it should be sound, (i.e., the
resulting expression is equivalent to the original one); and
none of the resulting predicates should be any bigger than
the original predicates, by some measure (see ğ3). For exam-
ple, the domain axiom: incx · (x > n) ≡ (x > n − 1) · incx
ensures that weakest preconditions for incx are modeled by
the equational theory. The other axioms are used to justify
the remaining weakest preconditions that relate other ac-
tions and predicates. Additional axioms that do not involve
actions (Gt-Contra, GT-Min), are included to ensure that
the predicate fragment of IncNat is complete in isolation.
Formally, the client must provide the following for our

normalization routine (part of completeness): primitive tests
and actions (α and π ), semantics for those primitives (states
σ and functions pred and act), a function identifying each
primitive’s subterms (sub), a weakest precondition relation
(WP) justified by sound domain axioms (≡), restrictions on
WP term size growth. In addition to these definitions, our
client theory incurs a few proof obligations: ≡must be sound
with respect to the semantics; the pushback relation should
never push back a term that’s larger than the input; the
pushback relation should be sound with respect to ≡; and
we need a satisfiability checking procedure for a Boolean
algebra extended with the primitive predicates. Given these
things, we can construct a sound and complete KAT with
a normalization-based equivalence procedure. For this ex-
ample, the deductive completeness of the model shown here
can be reduced to Presburger arithmetic.
It was relatively easy to define IncNat, and we get real

powerÐwe’ve extended KAT with unbounded state. It is
sound to add other operations to IncNat, like scalar multi-
plication or addition. So long as the operations are mono-
tonically increasing and invertible, we can still define a
WP and corresponding axioms. It is not possible, however,
to compare two variables directly with tests like x = yÐ
doing so would break the requirement that weakest pre-
condition does not enlarge tests. Put another way, the test
x = y can encode context-free languages! The non-KMT
term x := 0 · y := 0; (incx )

∗ · (incy )
∗ · x = y does balanced

increments of x and y. For similar reasons, we cannot add a
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decrement operation decx . Either of these would let us define
counter machines, leading inevitably to undecidability.

Implementation. Users implement KMT’s client theo-
ries by defining OCaml modules; users give the types of ac-
tions and tests along with functions for parsing, computing
subterms, calculating weakest preconditions for primitives,
mapping predicates to an SMT solver, and deciding predicate
satisfiability (see ğ4 for more detail).
Our example implementation starts by defining a new,

recursive module called IncNat. Recursive modules let the
client theory make use of the derived KAT functions and
types. For example, themodule K on the fifth line gives us a re-
cursive reference to the resulting KMT instantiated with the
IncNat theory; such self-reference is key for higher-order
theories, which must embed KAT predicates inside of other
kinds of predicates (ğ2). The client defines two types: tests a
and actions p. Here, tests are just x > n where variables are
strings, and numbers are ints. Actions store the variable
being incremented (incx ); we omit assignment to save space.

type a = Gt of string ∗ int (* alpha ::= x > n *)

type p = Increment of string (* pi ::= inc x *)

module rec IncNat : THEORY
(* generated KMT, for recursive use *)

module K = KAT (IncNat)
(* extensible parser; pushback; subterms *)

let parse name es = ...
let push_back p a = match (p,a) with
| (Increment x, Gt (y, j)) when x = y→

singleton_set (K.theory (Gt (y, j − 1)))
| ...

let rec subterms x = ...
(* decision procedure for predicates *)

let satisfiable (a: K.Test.t) = ...
end

The first function, parse, allows the library author to extend
the KAT parser (if desired) to include new kinds of tests and
actions in terms of infix and named operators. The imple-
mentation obligationsÐsyntactic extensions, subterms func-
tions,WP on primitives, a satisfiability checker for the test
fragmentÐmirror our formal development. We offer more
client theories in ğ2 and more implementation detail in ğ4.

Contributions. We claim the following contributions:

• A compositional framework for defining KATs and proving
their metatheory, with a novel development of the normal-
ization procedure used in completeness (ğ3). Completeness
yields a decision procedure based on normalization.
• Case studies of this framework (ğ2), several of which re-
produce results from the literature, and several of which
are new and cover unbounded state: base theories (e.g.,
naturals, bitvectors [28], networks), and more importantly,

compositional, higher-order theories (e.g., sets and LTLf ).
We derive Temporal NetKAT compositionally [8] by ap-
plying the theory of LTLf to a theory of NetKAT; doing
so strengthens Temporal NetKAT’s completeness result.
• An implementation of KMT (ğ4) mirroring our proofs;
deriving an equivalence decision procedure for client the-
ories from just a few definitions. Our implementation is
efficient enough to experiment with small programs (ğ5).

Finally, our framework offers a new way in for those looking
to work with KATs. Researchers comfortable with inductive
relations from, e.g., type theory and semantics, will find a
familiar friend in pushback, our generalization of weakest
preconditionsÐwe define it as an inductive relation.

Notes for KAT experts. To restate our contributions for
readers more deeply familiar with KAT: our work is quite
different from conventional work on KAT, which tends to
focus on abstract, general theories. KAT’s success in NetKAT
is portable, but would-be KAT users need help construct-
ing concrete KAT instances. Our framework is similar to
Schematic KAT [33]. But Schematic KAT is incomplete. Our
framework identifies a complete subset of Schematic KATs:
tracing semantics and monotonic weakest preconditions.

2 Case Studies

We define KAT client theories for bitvectors and networks,
as well as higher-order theories for products of theories, sets,
and temporal logic (Fig. 2). To give a sense of the range and
power of our framework, we offer these case studies before
the formal details of the framework itself (ğ3).

2.1 Bit Vectors

The simplest KMT is bit vectors: we extend KAT with some
finite number of bits, each of which can be set to true or false
and tested for their current value (Fig. 2(a)). The theory adds
actions b := t and b := f for boolean variables b, and tests of
the form b = t, where b is drawn from some set of names B.
Since our bit vectors are embedded in a KAT, we can use

KAT operators to build up encodings on top of bits: b = f
desugars to ¬(b = t); flip b desugars to (b = t · b := f) + (b =

f · b := t).We could go further and define numeric opera-
tors on collections of bits, at the cost of producing larger
terms. We are not limited to numbers, of course; once we
have bits, we can encode any bounded structure we like.
KAT+B! [28] develops a similar theory, but our semantics
admit different equalities. KMT uses trace semantics, distin-
guishing b := t ·b := t and b := t. Even though the final states
are equivalent, they produce different traces because they
run different actions. KAT+B!, on the other hand, doesn’t
distinguish based on the trace of actions, so they find that
(b := t · b := t) ≡ (b := t). KMT can’t exactly model KAT+B!.
(We have a similar relationship to NetKAT (ğ2.5).) It’s difficult
to say if one model is ‘better’Ðeither could be appropriate,
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Syntax

α ::= b = t π ::= b := t | b := f

sub(α) = {α }

Semantics

b ∈ B State = B → {t, f}

pred(b = t, t) = last(t)(b) act(b := t,σ ) = σ [b 7→ t] act(b := f,σ ) = σ [b 7→ f]

Weakest precondition

b := t · b = t WP 1 b := f · b = t WP 0

Axioms

(b := t) · (b = t) ≡ (b := t) True-True (b := f) · (b = t) ≡ 0 False-True

(a) BitVec, theory of bitvectors
Syntax

α ::= α1 | α2 π ::= π1 | π2

sub(αi ) = subi (αi )

Semantics

State = State1 × State2

pred(αi , t) = predi (αi , ti ) act(πi ,σ ) = σ [σi 7→ acti (πi ,σi ) ]

Weakest precondition extending T1 and T2

π1 · α2 WP α2 π2 · α1 WP α1

Axioms extending T1 and T2

π1 · α2 ≡ α2 · π1 L-R-Comm π2 · α1 ≡ α1 · π2 R-L-Comm

(b) Prod(T1,T2), products of two disjoint theories
Syntax

α ::= in(x , c) | e = c | αe π ::= add(x , e) | πe

sub(in(x , c)) = {in(x , c)} ∪ sub(¬(e = c))

sub(e = c) = sub(e = c)

sub(αe ) = sub(αe )

Semantics

c ∈ C e ∈ E x ∈ V State = (V → P(C)) × ( E → C )

pred(in(x , c), t) = c ∈ last(t)1(x) pred(αe , t) = pred(αe , t2)

act(add(x , e),σ ) = σ [σ1[x 7→ σ1(x) ∪ {σ (e)}]]

act(πe ,σ ) = σ [σ2 7→ act(πe ,σ2)]

Weakest precondition extending E

add(y, e) · in(x , c)WP in(x , c)

add(x , e) · in(x , c)WP (e = c) + in(x , c)

add(x , e) · αe WP αe

Axioms extending E

add(y, e) · in(x , c) ≡ in(x , c) · add(y, e) Add-Comm

add(x , e) · in(x , c) ≡ ((e = c) + in(x , c)) · add(x , e) Add-In

add(x , e) · αe ≡ αe · add(x , e) Add-Comm2

(c) Set(E), unbounded sets over expressions

Syntax

α ::= ⃝ a | a S b | a π ::= πT

sub(⃝a) = {⃝a} ∪ sub(a)

sub(a S b) = {a S b} ∪ sub(a) ∪ sub(b)

 a ≜ ¬ ⃝ ¬a a B b ≜ a S b + □a

start ≜ ¬ ⃝ 1 ♢a ≜ 1 S a □a ≜ ¬♢¬a

Semantics

State = StateT

pred(⃝a, ⟨σ , l⟩) = f pred(⃝a, t ⟨σ , l⟩) = pred(a, t)

pred(a S b, ⟨σ , l⟩) = pred(b, ⟨σ , l⟩)

pred(a S b, t ⟨σ , l⟩) = pred(b, t ⟨σ , l⟩) ∨ (pred(a, t ⟨σ , l⟩) ∧ pred(a S b, t))

act(π ,σ ) = act(π ,σ )

Weakest precondition extending T

π · ⃝a WP a

π · a PB•T a′ · π π · b PB•T b ′ · π

π · (a S b)WP b ′ + a′ · (a S b)

a ≤  a · b → a ≤ □b LTL-Induction

Axioms (extending those of T )

⃝(a · b) ≡ ⃝a · ⃝b LTL-Last-Dist-Seq

⃝(a + b) ≡ ⃝a +⃝b LTL-Last-Dist-Plus

 1 ≡ 1 LTL-WLast-One

a S b ≡ b + a · ⃝(a S b) LTL-Since-Unroll

¬(a S b) ≡ (¬b) B (¬a · ¬b) LTL-Not-Since

□a ≤ ♢(start · a) LTL-Finite

(d) LTLf (T ), linear temporal logic on finite traces over an arbitrary theory

Figure 2. Client theories for KMT; in higher-order theories, we highlight client obligations.

depending on the setting. For example, our tracing semantics
is useful for answering model-checking-like questions (ğ2.4).

2.2 Disjoint Products

Given two client theories, we can combine them into a dis-
joint product theory, Prod(T1,T2), where the states are prod-
ucts of the two sub-theory’s states and the predicates and

actions from T1 can’t affect T2 and vice versa (Fig. 2(b)). We
explicitly give definitions for pred and act that defer to the
corresponding sub-theory, using ti to project the trace state
to the ith component. It may seem that disjoint products
don’t give us much, but they in fact allow for us to simulate
much more interesting languages in our derived KATs. For
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example, Prod(BitVec, IncNat) allow boolean- or (increasing)
natural-valued variables; the product theory lets us directly
express things Kozen [32] encoded manually, i.e., loops over
boolean and numeric state.

2.3 Unbounded Sets

We define a KMT for unbounded sets parameterized on a
theory of expressions E (Fig. 2(c)). We also support maps,
but we omit them out of space concerns. The set data type
supports just one operation: add(x , e) adds the value of ex-
pression e to set x (we could add del(x , e), but we omit it to
save space). It also supports a single test: in(x , c) checks if
the constant c is contained in set x . The idea is that e ∈ E
refers to expressions with, say, variables x and constants
c . We allow arbitrary expressions e in some positions and
constants c in others. It’s critical that for each constant c ,
the test of expression equality e = c be smaller in our global
ordering than the membership test in(x , c). For example, we
can have sets of naturals by setting E ::= n ∈ N | i ∈ V ′,
where our constants C = N andV ′ is some set of variables
distinct from those we use for sets. We can then prove that
the term (inci ·add(x , i))∗ · (i > 100) · in(x , 100) is non-empty
by pushing tests back (and unrolling the loop 100 times).
To instantiate the Set theory, we need a few things: ex-

pressions E, a subset of constants C ⊆ E, and predicates
for testing (in)equality between expressions and constants
(e = c and e , c). Comparing two variables would cause
us to accidentally define a counter machine. Our state has
two parts: σ1 : V → P(C) records the current sets for each
set in V , while σ2 : E → C evaluates expressions in each
state. Since each state has its own evaluation function, the
expression language can have actions that update σ2.

2.4 Past-Time Linear Temporal Logic

Past-time linear temporal logic on finite traces (LTLf ) [5, 8ś
10, 16, 17, 45] is a higher-order theory: LTLf extends another
theory T , with its own predicates and actions. Any T test
can appear in of LTLf ’s temporal predicates (Fig. 2(d)).

LTLf adds just two predicates: ⃝a, pronounced łlast až,
means a held in the prior state; and a S b, pronounced ła
since bž, means b held at some point in the past, and a has
held since then. There is a slight subtlety around the begin-
ning of time: we say that ⃝a is false at the beginning (what
can be true in a state that never happened?), and a S b de-
generates to b at the beginning of time. These two predicates
suffice to encode the rest of LTLf ; encodings are given below
the syntax. Weakest preconditions uses inference rules: to
push back S, we unroll a S b into a · ⃝(a S b) + b; push-
ing last through an action is easy, but pushing back a or b
recursively uses the PB• judgment from the normalization
routine of the KMT framework (Fig. 5). Our implementa-
tion’s recursive modules let us use the derived pushback to
define weakest preconditions.

Syntax

α ::= f = v π ::= f ← v sub(α) = {α }

Semantics

F = packet fields V = packet field values State = F→ V

pred(f = v, t) = last(t). f = v act(f ← v,σ ) = σ [f 7→ v]

Weakest precondition

f ← v · f = v WP 1

f ← v · f = v ′WP 0 when v , v ′

f ′ ← v · f = v WP f = v

Axioms

f ← v · f ′ = v ′ ≡ f ′ = v ′ · f ← v PA-Mod-Comm

f ← v · f = v ≡ f ← v PA-Mod-Filter

f = v · f = v ′ ≡ 0, if v , v ′ PA-Contra∑
v f = v ≡ 1 PA-Match-All

Figure 3. Tracing NetKAT a/k/a NetKAT without dup

The equivalence axioms come from Temporal NetKAT [8];
the deductive completeness result for these axioms comes
from Campbell’s undergraduate thesis [9, 10]; Roşu’s proof
uses different axioms [45].

2.5 Tracing NetKAT

We define NetKAT as a KMT over packets, which we model
as functions from packet fields to values (Fig. 3). KMT’s trac-
ing semantics diverge slightly from NetKAT’s: like KAT+B!
(ğ2.1; [28]), NetKAT normally merges adjacent writes. If the
policy analysis demands reasoning about the history of pack-
ets traversing the networkÐreasoning, for example, about
which routes packets actually takeÐthe programmer must
insert dups to record relevant moments in time. From our
perspective, NetKAT very nearly has a tracing semantics,
but the traces are selective. If we put an implicit dup before
every field update, NetKAT has our tracing semantics.

2.6 Temporal NetKAT

We derive Temporal NetKAT as LTLf (NetKAT), i.e., LTLf
instantiated over tracing NetKAT; the combination yields
precisely the system described in the Temporal NetKAT pa-
per [8]. Recent proofs of deductive completeness for LTLf [9,
10] yield a stronger completeness resultÐthe original work
showed completeness only for łnetwork-widež policies, i.e.,
those with start at the front.

3 The KMT Framework

The rest of our paper describes how our framework takes
a client theory and generates a KAT. We emphasize that
you need not understand the following formalism to use our
frameworkÐwe do it once and for all, so you don’t have to!
In figures, we highlight what the client theory must provide.
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We derive a KAT T ∗ (Fig. 4) from a client theory T , where
T has two primitive partsÐpredicates α ∈ Tα and actions
π ∈ Tπ . Lifting Tα to a Boolean algebra yields T ∗

pred
⊆ T ∗,

where T ∗ is the KAT that embeds the client theory.
A client theory must provide: (1) primitives α and π ; (2)

a notion of state and semantics for those primitives on that
state; (3) theory-specific axioms of KAT equivalences that
should hold, in terms of α and π (≡T ); (4) a weakest pre-
condition operation WP that relates each α and π ; and (5)
a satisfiability checker for the theory’s predicates, i.e., for
T ∗
pred

. (See ğ4 for details on how these are provided.)

Our framework provides results for T ∗ in a pay-as-you-go
fashion: given just the state and an interpretation for the
predicates and actions of T , we derive a tracing semantics
for T ∗ (ğ3.1); if the axioms of T are sound with respect to
the tracing semantics, then T ∗ is sound (ğ3.2); if the axioms
of T are complete with respect to our semantics and WP

satisfies some ordering requirements, thenT ∗ has a complete
equational theory (ğ3.4); and finally, with just a bit of code
defining the structure of T and deciding the predicate theory
T ∗
pred

, we can derive a decision procedure for equivalence (ğ4)

using the normalization routine from completeness (ğ3.4).
The key to our general, parameterized proof is a novel

pushback operation that generalizes weakest preconditions
(ğ3.3.2): given an understanding of how to push primitive
predicates back to the front of a term, we can normalize
terms for our completeness proof (ğ3.4).

3.1 Semantics

The first step in turning the client theory T into a KAT is to
define a semantics (Fig. 4). We can give any KAT a tracing
semantics: the meaning of a term is a trace t , which is a
non-empty list of log entries l . Each log entry records a state
σ and (in all but the initial state) a primitive action π . The
client assigns meaning to predicates and actions by defining
a set of states State and two functions: one to determine
whether a predicate holds (pred) and another to determine
an action’s effects (act). To run a T ∗ term on a state σ , we
start with an initial state ⟨σ ,⊥⟩; when we’re done, we’ll
have a set of traces of the form ⟨σ0,⊥⟩⟨σ1,π1⟩ . . . , where
σi = act(πi ,σi−1) for i > 0. (A similar semantics shows up in
Kozen’s application of KAT to static analysis [32].)
The client’s pred function takes a primitive predicate α

and a trace Ð predicates can examine the entire trace Ð
returning true or false. When the pred function returns t,
we return the singleton set holding our input trace; when
pred returns f, we return the empty set. It’s acceptable for
pred to recursively call the denotational semantics (e.g., ğ2.6),
though we have skipped the formal detail here.
The client’s act function takes a primitive action π and

the last state in the trace, returning a new state. Whatever
new state comes out is recorded in the trace along with π .

3.2 Soundness

Proving the equational theory sound relative to our tracing
semantics is easy: we depend on the client’s act and pred

functions, and none of our KAT axioms refer to primitives
(Fig. 4). Our soundness proof requires that the client theory’s
equations be sound in our tracing semantics.

Theorem 3.1 (Soundness of T ∗ relative to T ). If p ≡T q ⇒

[[p]] = [[q]] then p ≡ q ⇒ [[p]] = [[q]].

Proof. By induction on the derivation of p ≡ q. □

If the client theory is buggy, i.e., the axioms are unsound,
then we can offer no guarantees about T at all. For the
duration of ğ3, we assume that any equations T adds are
sound and, so, T ∗ is sound by Theorem 3.1.

3.3 Normalization via Pushback

In order to prove completeness (ğ3.4), we reduce our KAT
terms to a more manageable subset of normal forms. Normal-
ization happens via a generalization of weakest precondi-
tions; we use a pushback operation to translate a term p into
an equivalent term of the form

∑
ai ·mi where eachmi does

not contain any tests. The client theory’s completeness result
on the ai then reduces the completeness of our language to
an existing result for Kleene algebra on themi .

The client theory T must provide two things for our nor-
malization procedure: (1) a way to extract subterms from
predicates, which orders predicates for the termination mea-
sure on normalization (ğ3.3.1); and (2) weakest preconditions
for primitives (ğ3.3.2). Once we’ve defined our normalization
procedure, we can use it prove completeness (ğ3.4).

3.3.1 Normalization and theMaximal SubtermOrder-

ing. Our normalization algorithm works by łpushing backž
predicates to the front of a term until we reach a normal form
with all predicates at the front. The pushback algorithm’s
termination measure is complex: pushing a predicate back
may not eliminate it; pushing test a back through π may
yield

∑
ai · π where each of the ai copies some subterm of

aÐand there may be many such copies!
Let the set of restricted actions TRA be the subset of T ∗

where the only test is 1. Let the metavariablesm, n, and l to
denote elements of TRA. Let the set of normal forms T ∗

nf
be a

set of pairs of tests ai ∈ T ∗pred and restricted actionsmi ∈ TRA.

Let the metavariables t , u, v , w , x , y, and z to denote el-
ements of T ∗

nf
; we typically write these sets as sums, i.e.,

x =
∑k

i=1 ai ·mi means x = {(a1,m1), (a2,m2), . . . , (ak ,mk )}.
The sum notation is convenient, but normal forms must re-
ally be treated as setsÐthere should be no duplicated terms in
the sum. We write

∑
i ai to denote the normal form

∑
i ai · 1.

The set of normal forms, T ∗
nf
, is closed over parallel composi-

tion by simply joining the sums. The fundamental challenge
in our normalization method is to define sequential compo-
sition and Kleene star on T ∗

nf
.
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Predicate syntax

a,b ::= 0 additive identity

| 1 multiplicative identity

| ¬a negation

| a + b disjunction

| a · b conjunction

| α primitive predicates (Tα )

Action syntax

p,q ::= a embedded predicates

| p + q parallel composition

| p · q sequential composition

| p∗ Kleene star

| π primitive actions (Tπ )

Trace definitions

σ ∈ State

l ∈ Log ::= ⟨σ ,⊥⟩ | ⟨σ ,π ⟩

t ∈ Trace = Log+

pred : Tα × Trace→ {t, f}

act : Tπ × State→ State

Tracing semantics [[−]] : T ∗ → Trace→ P(Trace)

[[0]](t) = ∅

[[1]](t) = {t}

[[α]](t) = {t | pred(α , t) = t}

[[¬a]](t) = {t | [[a]](t) = ∅}

[[π ]](t) = {t ⟨σ ′,π ⟩ | σ ′ = act(π , last(t))}

[[p + q]](t) = [[p]](t) ∪ [[q]](t)

(f • д)(t) =
⋃
t ′∈f (t ) д(t

′)

f 0(t) = {t} f i+1(t) = (f • f i )(t)

last(. . . ⟨σ , _⟩) = σ

[[p · q]](t) = ([[p]] • [[q]])(t)

[[p∗]](t) =
⋃

0≤i [[p]]
i (t)

Axioms (KA = Kleene algebra; BA = Boolean algebra)

p + (q + r ) ≡ (p + q) + r KA-Plus-Assoc

p + q ≡ q + p KA-Plus-Comm

p + 0 ≡ p KA-Plus-Zero

p + p ≡ p KA-Plus-Idem

p · (q · r ) ≡ (p · q) · r KA-Seq-Assoc

1 · p ≡ p KA-Seq-One

p · 1 ≡ p KA-One-Seq

p · (q + r ) ≡ p · q + p · r KA-Dist-L

(p + q) · r ≡ p · r + q · r KA-Dist-R

0 · p ≡ 0 KA-Zero-Seq

p · 0 ≡ 0 KA-Seq-Zero

1 + p · p∗ ≡ p∗ KA-Unroll-L

1 + p∗ · p ≡ p∗ KA-Unroll-R

q + p · r ≤ r → p∗ · q ≤ r KA-LFP-L

p + q · r ≤ q → p · r∗ ≤ q KA-LFP-R

a + (b · c) ≡ (a + b) · (a + c) BA-Plus-Dist

a + 1 ≡ 1 BA-Plus-One

a + ¬a ≡ 1 BA-Excl-Mid

a · b ≡ b · a BA-Seq-Comm

a · ¬a ≡ 0 BA-Contra

a · a ≡ a BA-Seq-Idem

Consequences

(p + q)∗ ≡ p∗ · (q · p∗)∗ Denesting

p · a ≡ b · p ↔ p · ¬a ≡ ¬b · p Pushback-Neg

p · (q · p)∗ ≡ (p · q)∗ · p Sliding

p · a ≡ a · q + r → p∗ · a ≡ (a + p∗ · r ) · q∗ Star-Inv

p · a ≡ a · q + r → p · a · (p · a)∗ ≡ (a · q + r ) · (q + r )∗ Star-Expand

p ≤ q ⇔ p + q ≡ q

Figure 4. Semantics and equational theory for T ∗

Our normalization algorithm uses the maximal subterm

ordering as its termination measure. Here we simply give
intuition for the two relevant high-level operations:mt(x) ⊆

T ∗
pred

computes the maximal tests of a normal form x , which

are those tests that are not subterms of any other test. The
maximal subterm ordering x ⪯ y for normal forms holds
when the x ’s tests’ subterms are a subset of y’s tests’ sub-
terms. Informally, we have x ⪯ y when every test in x is
somehow łcoveredž by a test in y; we have x ≺ y when
x ⪯ y and y has some test x that does not. Our definition of
subterms asks the client theory to identify the parts of its
primitives via a function subT such that (1) if b ∈ subT(a)
then sub(b) ⊆ subT(a) and (2) if b ∈ subT(a), then either
b ∈ {0, 1,a} or b precedes a in a global ordering of predicates.
We use the subterm ordering to shows we can always ‘split’
a normal form x around a maximal test a ∈ mt(x) such that

we have a pair of normal forms: a ·y + z, where both y and z
are smaller than x in our ordering. Splitting helps push tests
back: the maximal test a (1) is factored out to the front of y
and (2) does not appear in z at all.

Lemma 3.2 (Splitting). If a ∈ mt(x), then there exist y and

z such that x ≡ a · y + z and y ≺ x and z ≺ x .

3.3.2 Pushback. Normalization requires that the client
theory’s weakest preconditions respect the subterm ordering.

Definition 3.3 (Weakest preconditions). The client theory’s
weakest precondition operation is a relationWP ⊆ Tπ × Tα ×

P(T ∗
pred
), where Tπ are the primitive actions and Tα are the

primitive predicates of T .WP need not be a function, but we
require ∀πα∃A, (π ,α ,A) ∈ WP. We write π · α WP

∑
ai · π

and read it as łα pushes back through π to yield
∑
ai ·π ž (the
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second π is purely notational). We require that if π · α WP

{a1, . . . ,ak } · π , then π · α ≡
∑k

i=1 ai · π , and ai ⪯ α .

Given the client theory’s weakest-precondition relation WP,
we define a normalization procedure for T ∗ by extending
the client’sWP relation to a more general pushback relation,
PB (Fig. 5). The client’s WP relation need not be a function,
nor do the ai need to be obviously related to α or π in any
way. Even when theWP relation is a function, the PB rela-
tion generally won’t be. While WP computes the classical
weakest precondition, the PB relations are different: when
pushing back we change the program itselfÐnot normally an
option for weakest preconditions (see ğ6).

The top-level normalization routine is the syntax-directed
p norm x relation (Fig. 5), which takes a term p and produces
a normal form x =

∑
i aimi . Most syntactic forms are easy to

normalize: predicates are already normal forms (Pred); prim-
itive actions π have single-summand normal forms where
the predicate is 1 (Act); parallel composition of two normal
forms means just joining the sums (Par). But sequence and
Kleene star are harder: we define judgments using PB to lift
these operations to normal forms (Seq, Star).

For sequences, we can recursively take p ·q and normalize
p into x =

∑
ai ·mi and q into y =

∑
bj · nj . To combine x

and y, we can concatenate and rearrange the normal forms
to get

∑
i, j ai ·mi ·bj ·nj . We write x ·y PBJ z to mean that the

concatenation of x and y is equivalent to the normal form
zÐthe · is suggestive notation, here and elsewhere.

For Kleene star, we can take p∗ and normalize p into x =∑
ai ·mi , but x∗ isn’t a normal formÐwe need to somehow

move all of the tests out of the star and to the front. We do
so with the PB∗ relation (Fig. 5), writing x∗ PB∗ y to mean
that the Kleene star of x is equivalent to the normal form
yÐthe ∗ on the left is again suggestive notation. The PB∗

relation is more subtle than PBJ. Depending on how x splits
(Lemma 3.2), there are four possibilities: if x = 0, then 0∗ ≡ 1

(StarZero); if x splits into a · x ′, then we can either use the
KAT sliding lemma to pull the test out when a is strictly
the largest test in x (Slide) or by using the KAT expansion
lemma (Expand); if x splits into a · x ′ + z, we use the KAT
denesting lemma to pull a out before continuing recursively
(Denest). SeqStarSmaller and SeqStarInv push a test (a)
back through a star (m∗). Both rules work by unrolling the
loop. In the simple case (SeqStarSmaller), the resulting test
at the front is strictly smaller than a, and we can generate a
normal form directly. When pushing the test back doesn’t
shrink a, we use Star-Inv to divide the term into parts with
the maximal test (a · t ) and without it (u).

The bulk of the pushback’s work happens in the PB• rela-
tion, which pushes a test back through a restricted action;
PBR and PBT use PB• to push tests back through other forms.
To handle negation, the function nnfÐelided for spaceÐputs
predicates in negation normal form, where negations only
appear on primitive predicates, using De Morgan’s laws.

We show that our notion of pushback is correct in two
steps. First we prove that pushback is partially correct, i.e.,
if we can form a derivation in the pushback relations, the
right-hand sides are equivalent to the left-hand-sides (Theo-
rem 3.4). Then we show that the mutually recursive tangle
of our PB relations always terminates (Theorem 3.5) .

Theorem 3.4 (Pushback soundness). Each of PB relations’

left is equivalent to its right, e.g., if x∗ PB∗ y then x∗ ≡ y.

Proof. By simultaneous induction on the derivations. □

Finally, we show that every left-hand side of each pushback
relation has a corresponding right-hand side. We haven’t

proved that the pushback relation is functionalÐthere could
be many different choices of maximal tests to push back.

Theorem 3.5 (Pushback existence). Each PB relations’ left

relates to some right that is no larger than the left’s parts, e.g.,

for all x there exists y ⪯ x such that x∗ PB∗ y.

Proof. By induction on the lexicographical order of: the sub-
term ordering (≺); the size of x ; the size ofm (for PB• and
PBR); and the size of a (for PB• and PBT). Cases first split
(Lemma 3.2) to show that derivations exist; subterm ordering
congruence finds orderings to apply the IH. □

With pushback in hand, we show that every term has an
equivalent normal form.

Corollary 3.6 (Normal forms). For all p ∈ T ∗, there exists a

normal form x such that p norm x and that p ≡ x .

Proof. By induction on p, using Theorems 3.5 and 3.4 in the
Seq and Star case. □

The PB relations and these two proofs are one of the con-
tributions of this paper: it is the first time that a KAT nor-
malization procedure has been given as a distinct procedure,
rather than hiding inside of normal forms used in complete-
ness proofs. Temporal NetKAT, which introduced pushback,
proved Theorems 3.4 and 3.5 as a single theorem, without
any explicit normalization or pushback relation.
If the client’sWP doesn’t obey the axioms, then normal-

ization may produce garbage. If the client’sWP is sound but
disrespects the global ordering, then normalization may not
terminate, but any results it does produce will be correct.

3.4 Completeness

We prove completeness relative to our tracing semanticsÐif
[[p]] = [[q]] then p ≡ qÐby normalizing p and q and compar-
ing the resulting terms. Like other completeness proofs, ours
uses the completeness of Kleene algebra (KA) as its foun-
dation: the set of possible traces of actions performed for
a restricted (test-free) action in our denotational semantics
is a regular language, and so the KA axioms are sound and
complete for it. In order to relate our denotational semantics
to regular languages, we define the regular interpretation of
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Normalization p norm x

a norm a
Pred

π norm 1 · π
Act

p norm x q norm y

p + q norm x + y
Par

p norm x q norm y x · y PBJ z

p · q norm z
Seq

p norm x x∗ PB∗ y

p∗ norm y
Star

Pushback x · y PBJ z m · a PB• y m · x PBR y x · a PBT y

mi · bj PB
• xi j

(
∑
i ai ·mi ) · (

∑
j bj · nj ) PB

J ∑
i
∑
j ai · xi j · nj

Join
m · 0 PB• 0

SeqZero
m · 1 PB• 1 ·m

SeqOne

m · a PB• y y · b PBT z

m · (a · b) PB• z
SeqSeqTest

n · a PB• x m · x PBR y

(m · n) · a PB• y
SeqSeqAction

m · a PB• x m · b PB• y

m · (a + b) PB• x + y
SeqParTest

m · a PB• x n · a PB• y

(m + n) · a PB• x + y
SeqParAction

π · α WP {a1, . . . }

π · α PB•
∑
i ai · π

Prim
π · a PB•

∑
i ai · π nnf(¬(

∑
i ai )) = b

π · ¬a PB• b · π
PrimNeg

m · a PB• x x ≺ a

m∗ · x PBR y

m∗ · a PB• a + y
SeqStarSmaller

m · a PB• a · t + u m∗ · u PBR x

t∗ PB∗ y x · y PBJ z

m∗ · a PB• a · y + z
SeqStarInv

m · ai PB
• xi

m ·
∑
i ai · ni PB

R ∑
i xi · ni

Restricted
mi · a PB•

∑
j bi j ·mi j

(
∑
i ai ·mi ) · a PBT

∑
i
∑
j ai · bi j ·mi j

Test

Normalization of star x∗ PB∗ y

0∗ PB∗ 1
StarZero

x ≺ a x · a PBT y y∗ PB∗ y′ y′ · x PBJ z

(a · x)∗ PB∗ 1 + a · z
Slide

x ⊀ a x · a PBT a · t + u

(t + u)∗ PB∗ y y · x PBJ z

(a · x)∗ PB∗ 1 + a · z
Expand

a < mt(z) y . 0 y∗ PB∗ y′

x · y′ PBJ x ′ (a · x ′)∗ PB∗ z y′ · z PBJ z′

(a · x + y)∗ PB∗ z′
Denest

Figure 5. Normalization for T ∗

restricted actionsm ∈ TRA in the conventional way and then
relate our denotational semantics to the regular interpreta-
tion. Our normalization routine only uses the KAT axioms
and doesn’t rely on any property of our tracing semantics.
We conjecture that one could prove a similar completeness
result and derive a similar decision procedure with amerging,
non-tracing semantics, like in NetKAT or KAT+B! [1, 28].

We use several KAT theorems in our completeness proof
(Fig. 4, Consequences), the most complex being star expan-
sion (Star-Expand) [8]. Pushback-Neg is a novel general-
ization of a theorem of Cohen and Kozen [14, 31].

Theorem 3.7 (Completeness). If the emptiness of T predi-

cates is decidable, then if [[p]] = [[q]] then p ≡ q.

Proof. There must exist normal forms x and y such that
p norm x and q norm y and p ≡ x and q ≡ y (Corollary 3.6);
by soundness (Theorem 3.1), we can find that [[p]] = [[x]] and

[[q]] = [[y]], so it must be the case that [[x]] = [[y]]. We will
show that x ≡ y to transitively prove that p ≡ q. We have
x =

∑
i ai ·mi and y =

∑
j bj ·nj . In principle, we ought to be

able to match up each of the ai with one of the bj and then
check to see whethermi is equivalent to nj (by appealing to
the completeness on Kleene algebra). But we can’t simply
do a syntactic matchingÐwe could have ai and bj that are
in effect equivalent, but not obviously so. Worse still, we
could have ai and ai′ equivalent! We need to perform two
steps of disambiguation: first each normal form’s predicates
must be unambiguous locally, and then the predicates must
be pairwise comparable between the two normal forms.
To construct independently unambiguous normal forms,

we explode our normal form x into a disjoint form x̂ , where
we test each possible combination of the predicates ai and
run the actions corresponding to the true predicates, i.e.,mi
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gets run precisely when ai is true:

x̂ = a1 · a2 · . . . · an · (m1 +m2 + . . . +mn)

+ ¬a1 · a2 · . . . · an · (m2 + . . . +mn)

+ a1 · ¬a2 · . . . · an · (m1 + . . . +mn)

+ . . .

+ ¬a1 · ¬a2 · . . . · an ·mn

+ ¬a1 · ¬a2 · . . . · ¬an · 0





2n

terms

and similarly for ŷ. We can find x ≡ x̂ via distributivity
(BA-Plus-Dist), commutativity (KA-Plus-Comm, BA-Seq-
Comm) and the excluded middle (BA-Excl-Mid).
Observe that the sum of all of the predicates in x̂ and

ŷ are respectively equivalent to 1, since it enumerates all
possible combinations of each ai (BA-Plus-Dist, BA-Excl-
Mid); i.e., if x̂ =

∑
i ci · li and ŷ =

∑
j dj ·mj , then

∑
i ci ≡ 1

and
∑

j dj ≡ 1. We can take advantage of exhaustiveness of
these sums to translate the locally disjoint but syntactically
unequal predicates in each x̂ and ŷ to a single set of predicates
on both, which allows us to do a syntactic comparison on
each of the predicates. Let Üx and Üy be the extension of x̂ and ŷ
with the tests from the other form, giving us Üx =

∑
i, j ci ·dj ·li

and Üy =
∑

i, j ci · dj · mj . Extending the normal forms to
be disjoint between the two normal forms is still provably
equivalent using commutativity (BA-Seq-Comm) and the
exhaustiveness above (KA-Seq-One).

Now that each of the predicates are syntactically uniform
and disjoint, we can proceed to compare the commands. But
there is one final risk: what if the ci · dj ≡ 0? Then li and
mj could safely be different. Since we can check predicates
of T for emptiness, we can eliminate those cases where
the expanded tests at the front of Üx and Üy are equivalent to
zero, which is sound by the client theory’s completeness and
zero-cancellation (KA-Zero-Seq and KA-Seq-Zero). If one
normal form is empty, the other one must be empty as well.
Finally, we can defer to deductive completeness for KA

to find proofs that the commands are equivalent. To use
KA’s completeness to get a proof over commands, we have
to show that if our commands have equal denotations in
our semantics, then they will also have equal denotations
in the KA semantics. We’ve done exactly this by showing
that restricted actions have regular interpretations: because
the zero-canceled Üx and Üy are provably equivalent, sound-
ness guarantees that their denotations are equal. Since their
tests are pairwise disjoint, if their denotations are equal, it
must be that any non-canceled commands are equal, which
means that interpreting the commands as Kleene algebra
(KA) terms over actions yields equal terms. By the deductive
completeness of KA, we know that KA ⊢ li ≡mj . Since T ∗

includes the KA axioms, li ≡ mj ; we have ci · dj ≡ ci · dj
by reflexivity, and so Üx ≡ Üy. By transitivity, we can see that
x̂ ≡ ŷ and so x ≡ y andÐfinally!Ðp ≡ q. □

Our completeness proof relies on the client theory’s deci-
sion procedure for satisfiability of T ∗

pred
terms. If the client

theory’s axioms are incomplete or this decision procedure
is buggy, then the derived completeness proof may not be
correct. With a broken decision procedure, the terms x̂/ŷ and
Üx/ Üy might not actually be unambiguous, and so the output
of the decision procedure would be garbage.

4 Implementation

Our formalism corresponds directly to our OCaml library.2

Implementing a client theory means defining a module with
the THEORY signature, lightly abridged:

module type THEORY = sig

module A : CollectionType (* predicates *)

module P : CollectionType (* actions *)

(* recursive knot for KAT from A and P *)

module Test with type t = A.t pred
module Term with type t = (A.t, P.t) kat
module K : KAT_IMPL
with module A = A and module P = P

and module Test = Test and module Term = Term

(* lightweight extension to parser *)

val parse : string→ expr list→ (A.t, P.t) either
(* WP relation *)

val push_back : P.t→ A.t→ Test.t set
(* ordering *)

val subterms : A.t→ Test.t set
(* optional routines for optimization *)

val simplify_not : A.t→ Test.t option
val simplify_and : A.t→ A.t→ Test.t option
val simplify_or : A.t→ A.t→ Test.t option
val merge : P.t→ P.t→ P.t
val reduce : A.t→ P.t→ P.t option
(* satisfiability checker and z3 encoding *)

val satisfiable : Test.t→ bool

val variable : P.t→ string

val variable_test : A.t→ string

val create_z3_var : string ∗ A.t→ Z3.context→
Z3.Solver.solver→ Z3.Expr.expr

val theory_to_z3_expr : A.t→ Z3.context→
Z3.Expr.expr StrMap.t→ Z3.Expr.expr

end

ğ1.2 summarizes the high-level idea and sketches an im-
plementation for the theory of increasing natural numbers.
Higher-order theories are instantiated with functors:

module P = Product(IncNat)(Boolean)
module D = Decide(P)
let a = P.K.parse "y<1;(a=F + a=T; inc(y));y>0" in

let b = P.K.parse "y<1;a=T;inc(y)" in

assert (D.equivalent a b)

2 https://github.com/mgree/kmt
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Themodule P instantiates Product over our theories of incre-
menting naturals and booleans; the module D gives a way to
normalize terms based on the completeness proof: it defines
the normalization procedure along with the decision pro-
cedure equivalent. Users of the library can combine these
modules to perform any number of tasks such as compila-
tion, verification, inference, and so on. For example, checking
language equivalence is then simply a matter of reading in
KMT terms and calling the normalization-based equivalence
checker. Our command-line tool works with these theories;
given KMT terms in some supported theory as input, it par-
titions them into equivalence classes.

Our implementation uses several optimizations. The three
most prominent are (1) hash-consing all KAT terms to ensure
fast set operations, (2) lazy construction and exploration of
word automata when checking actions for equivalence, and
(3) domain-specific satisfiability checking for some theories.

5 Evaluation

We evaluated KMT on a collection of microbenchmarks ex-
ercising concrete KAT features (Fig. 6). For example, the
second-to-last example does population count in a theory
combining naturals and booleans: if a counter y is above a
certain threshold, then the booleans a, b, and c must have
been set to true. Our tool is usable for explorationÐenough
to decide whether to pursue any particular KAT.
Our normalization-based decision procedure is very fast

in many cases. This is likely due to a combination of hash-
consing and smart constructors that rewrite complex terms
into simpler ones when possible, and the fact that, unlike pre-
vious KAT-based normalization proofs (e.g., [1, 32]) our nor-
malization proof does not require splitting predicates into all
possible łcomplete tests.ž However, our decision procedure
does very poorly on examples where there is a sum nested in-
side of a Kleene star, i.e., (p+q)∗. The final, bit-flipping bench-
mark is one such exampleÐit flips three boolean variables in
some arbitrary order. In this case the normalization-based
decision procedure repeatedly invokes the Denest rewriting
rule, which greatly increases the size of the term on each
invocation. Consider the simpler loop, which only flips from
false to true: (x1 = f;x1 := t + · · · + xn = f;xn := t)∗. With
n = 1, there are 4 disjunctions in the locally unambiguous
form; with n = 2, there are 16; with n = 3, there are 512; with
n = 4, there are 65,536. The normal forms grow in O(22

n

),
which quickly becomes intractable in space and time.

6 Related Work

Kozen and Mamouras’s Kleene algebra with equations [35]
is perhaps the most closely related work: they also devise a
framework for proving extensions of KAT sound and com-
plete. Our works share a similar genesis: Kleene algebra with
equations generalizes the NetKAT completeness proof (and
then reconstructs it); our work generalizes the Temporal

NetKAT completeness proof (and then reconstructs itÐwhile
also developing several other, novel KATs). Both their work
and ours use rewriting to find normal forms and prove deduc-
tive completeness. Their rewriting systems work on mixed
sequences of actions and predicates, but they can only delete
these sequences wholesale or replace them with a single
primitive action or predicate; our rewriting system’s push-
back operation only works on predicates (since the tracing
semantics preserves the order of actions), but pushback isn’t
restricted to producing at most a single primitive predicate.
Each framework can do things the other cannot. Kozen and
Mamouras can accommodate equations that combine actions,
like those that eliminate redundant writes in KAT+B! and
NetKAT [1, 28]; we can accommodate more complex pred-
icates and their interaction with actions, like those found
in Temporal NetKAT [8] or those produced by the composi-
tional theories (ğ2). A tracing semantics occurs in previous
work on KAT as well [26, 32]. Selective tracing (à la NetKAT’s
dup) offers more control over which traces are considered
equivalent; our pushback offers more flexibility for how ac-
tions and predicates interact. It may be possible to build a
hybrid framework, with ideas from both.
Kozen studies KATs with arbitrary equations x := e [33],

also called Schematic KAT, where e comes from arbitrary
first-order structures over a fixed signature Σ. He has a
pushback-like axiom x := e ·p ≡ p[x/e]·x := e . Arbitrary first-
order structures over Σ’s theory are much more expressive
than anything we can handleÐthe pushback may or may not
decrease in size, depending on Σ; KATs over such theories
are generally undecidable. We, on the other hand, are able to
offer pay-as-you-go results for soundness and completeness
as well as an implementations for deciding equivalenceÐbut
only for first-order structures that admit a non-increasing
weakest precondition. Other extensions of KAT often give
up on decidabililty, too. Larsen et al. [37] allow comparison
of variables, leading to an incomplete theory. They are, able,
however, to decide emptiness of an entire expression.
Coalgebra provides a general framework for reasoning

about state-based systems [34, 46, 50], which has proven
useful in the development of automata theory for KAT exten-
sions. Although we do not explicitly develop the connection
in this paper, we’ve developed an automata theoretic deci-
sion procedure for KMT that uses tools similar to those used
in coalgebraic approaches, and one could perhaps adapt our
theory and implementation to that setting. In principle, we
ought to be able to combine ideas from the two schemes
into a single, even more general framework that supports
complex actions and predicates.

Symkat is a powerful decision procedure for symbolic KAT,
but doesn’t work in our concrete setting [43]. It’s possible to
give symkat extra equations, and it can solve some equiva-
lences that KMT can, but it can’t handle, e.g., commutativity
in general. Knotical uses KAT to model program traces for
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Benchmark T Time to check equivalence

a∗ . a (for random arithmetic predicate a) N 0.034s
inc∗x ;x > 10 ≡ inc∗x ; inc

∗
x ;x > 10 N <0.001s

inc∗x ;x > 3; inc∗y ;y > 3 ≡ inc∗x ; inc
∗
y ;x > 3;y > 3 N <0.001s

x = f; (flip x ; flip x)∗ ≡ (flip x ; flip x)∗;x = f B <0.001s
w := f;x := t;y := f; z := f;

(if (w = t + x = t + y = t + z = t) then a := t else a := f)

≡ w := f;x := t;y := f; z := f;

(if (w = t + x = t) + (y = t + z = t) then a := t else a := f)

B <0.001s

y < 1;a = t; incy ; (1 + b = t; incy ); (1 + c = t; incy );y > 2

≡ y < 1;a = t;b = t; c = t; incy ; incy ; incy
N × B 0.309s

(flip x + flip y + flip z)∗ ≡ (flip x + flip y + flip z)∗ B >30s (timeout)

Figure 6. Implementation microbenchmarks. We timeout at 30s because waiting longer is unreasonable for a prototyping tool.

trace refinement [3]. Our tracing semantics may be partic-
ularly well adapted for them, though they could generate
KAT equations that fall outside of KMT’s capabilities.

Smolka et al. [52] find an almost linear algorithm for check-
ing equivalence of guarded KAT terms (O(n · α(n)), where
α is the inverse Ackermann function), i.e., terms which use
if and while instead of + and ∗, respectively. Their guarded
KAT is completely abstract (i.e., actions are purely symbolic),
while our KMTs are completely concrete (i.e., actions affect
a clearly defined notion of state).

Our work is loosely related to Satisfiability Modulo Theo-
ries (SMT) [19]. Both aim to create an extensible framework
where custom theories can be combined [41] and used to
increase the expressiveness and power [53] of the under-
lying technique (SAT vs. KA). Some of our KMT theories
implement satisfiability checking by calling out to Z3 [18].

The pushback requirement detailed in this paper is closely
related to the classical notion of weakest precondition [6, 20,
47]. The pushback operation isn’t quite a generalization of
weakest preconditions because the various PB relations can
change the program itself. Automatic weakest precondition
generation is generally limited in the presence of loops in
while-programs. While there has been much work on loop
invariant inference [24, 25, 27, 30, 42, 49], the problem re-
mains undecidable in most cases; however, the pushback
restrictions of łgrowthž of terms makes it possible for us to
automatically lift the weakest precondition generation to
loops in KAT. In fact, this is exactly what the normalization
proof does when lifting tests out of the Kleene star operator.

The core technique we discuss here was first developed in
Beckett et al.’s work on Temporal NetKAT [8]. Our work sig-
nificantly extends that work: our normalization proof is ex-
plicit, rather than implicit; we separate proofs of correctness
and termination of normalization; our treatment of negation
is improved; we prove a new KAT theorem (Pushback-Neg);
KMT is a general framework for proving completeness, while

the Temporal NetKAT development is specialized to a partic-
ular instance; and Temporal NetKAT proof achieves limited
completeness because of its limited understanding of LTLf ;
we are able to achieve a more general result [9, 10]. Beckett et
al. handles compilation to forwarding decision diagrams [51],
while our presentation doesn’t discuss compilation.

7 Conclusion

Kleene algebra modulo theories (KMT) is a new framework
for extending Kleene algebra with tests with the addition
of actions and predicates in a custom domain. KMT uses
an operation that pushes tests back through actions to go
from a decidable client theory to a domain-specific KMT.
Derived KMTs are sound and complete with respect to a
tracing semantics; we derive a decision procedure in an im-
plementation that mirrors our formalism. The KMT frame-
work captures common use cases and can reproduce by mere

composition several results from the literature as well as
several new results: we offer theories for bitvectors [28], nat-
ural numbers, unbounded sets, networks [1], and temporal
logic [8]. Our ability to reason about unbounded state is
novel. Our decision procedure follows our proof; automata-
theoretic/coinductive approaches would be more efficient.
Our approach isn’t inherently limited to tracing semantics,
as alternative regular interpretations could merge actions (as
in KAT+B!, NetKAT, and Kleene algebra with equations [1,
28, 35]); future work could develop a relational semantics.
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