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Abstract

This paper presents Flapjax, a language designed for con-
temporary Web applications. These applications communi-
cate with servers and have rich, interactive interfaces. Flap-
jax provides two key features that simplify writing these ap-
plications. First, it provides event streams, a uniform abstrac-
tion for communication within a program as well as with ex-
ternal Web services. Second, the language itself is reactive:
it automatically tracks data dependencies and propagates up-
dates along those dataflows. This allows developers to write
reactive interfaces in a declarative and compositional style.

Flapjax is built on top of JavaScript. It runs on unmodified
browsers and readily interoperates with existing JavaScript
code. It is usable as either a programming language (that
is compiled to JavaScript) or as a JavaScript library, and is
designed for both uses. This paper presents the language,
its design decisions, and illustrative examples drawn from
several working Flapjax applications.

Categories and Subject Descriptors D.3.2 [Programming
Languages): Language Classifications — Data-flow languages
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1. Introduction

The advent of broadband has changed the structure of appli-
cation software. Increasingly, desktop applications are mi-
grating to the Web. Programs that once made brief forays
to the network now “live” there. The network servers they
communicate with not only provide data but also store data,
enabling networked persistence. Some applications, known
as mashups, combine data from multiple sources. Often, ap-
plications process not only static data but also continuous
streams of information, such as RSS news feeds.

This paper presents Flapjax, a programming language
built with such applications in mind. We make three key
arguments, which this paper will substantiate:

e Event-driven reactivity is a natural programming model
for Web applications.

® Consistency should be a linguistic primitive.

e Uniformity is possible when treating both external events
(those from remote machines) and internal ones (those
from local devices such as the mouse). Uniformity en-
ables better abstractions and also reduces the number of
concepts needed for reasoning and validation.

Rather than invent a language from fresh cloth, we chose
to engineer Flapjax atop HTML and JavaScript (despite their
warts). JavaScript offers three important benefits. First, it is
found in all modern browsers, and has hence become a lin-
gua franca. Second, it reifies the entire content of the cur-



rent Web page into a single data structure called the Doc-
ument Object Model (DOM), so that developers can nat-
urally address and modify all aspects of the current page
(including its visual style). Third, it provides a primitive,
XMLHttpRequest, that permits asynchronous communica-
tion (in the style called Ajax [17]) without reloading the
current page. This enables background communication with
servers so Web applications can provide much of the reac-
tivity of desktop applications. As a result of building atop
JavaScript and HTML, Flapjax applications do not require
plugins or other browser modifications; they can reuse ex-
isting JavaScript libraries; and the language can build on the
existing knowledge of Web developers.

A formal presentation would hide the many pragmatic
benefits and decisions in the design of Flapjax. We there-
fore present it through a series of increasingly sophisticated
examples, including uses and mashups of popular Web ser-
vices. These demonstrate how event streams, and automatic
reaction to their changes, encourage several important soft-
ware design principles including model-view clarification
and policy-mechanism separation. We outline the implemen-
tation technique and its pragmatic choices. Finally, we dis-
cuss the use of the language in actual applications.

Language or Library? We have repeatedly referred to
Flapjax as a language, but with a little extra effort, Flapjax
can be used as a JavaScript library. That means the developer
who does not want to add the Flapjax-to-JavaScript com-
piler (section 3.3) to their toolchain can include the Flapjax
library and program purely in JavaScript itself; in fact, most
Flapjax applications are actually written this way (section 4).
This involves some overhead, as we discuss in section 3.3,
but we leave this decision in the hands of developers rather
than making it for them.

2. Flapjax by Example

We present Flapjax as a programming language through
examples. They are necessarily short, but Flapjax is a living,
breathing language! We invite the reader to view and run the
demos on the language site,' read the documentation of the
many primitives, and try out their own examples.

2.1 The Structure of JavaScript Programs

Before we study Flapjax, let us consider a very simple
JavaScript program. It displays the time elapsed since start-
ing or clicking on a button (figure 1, which elides some of
the HTML scaffolding). The point of this program is to fill in
a value for the curTime element on the HTML page. Con-
sider the reasoning a developer must employ:

1. The value is ostensibly displayed by the second line of
the function doEverySecond.

2. The value displayed is that of elapsedTime.

vrw . flapjax-lang.org

var timerID = null;
var elapsedTime = O;

function doEverySecond() {

elapsedTime += 1;

document . getElementById("curTime")

.innerHTML = elapsedTime; }

function startTimer() {

timerId = setInterval("doEverySecond()", 1000); }
function resetElapsed() {

elapsedTime = 0; }

<body onload="startTimer()">

<input id="reset" type="button" value="Reset"
onclick="resetElapsed()"/>

<div id="curTime"> </div>

</body>

Figure 1. Elapsed Time in JavaScript

3. elapsedTime is set in the previous line.
4. But this depends on the invocation of doEverySecond.

5. doEverySecond is passed inside a string parameter to
setInterval inside startTimer.

6. startTimer is called by the onload handler...so it
appears that’s where the value comes from.

7. Is that it? No, there’s also the initialization of the variable
elapsedTime at the top.

8. Oh wait: elapsedTimeis also set within resetElapsed.

9. Does resetElapsed ever execute? Yes, it is invoked in
the onclick.

Just to understand this tiny program, the developer needs to
reason about timers, initialization, overlap, interference, and
the structure of callbacks. (We trust the reader spotted the
semantic bug? See section 2.2 for the answer.)

The culprit here is not JavaScript, but the use of call-
backs and their effect on program structure. Callbacks are
invoked by a generic event loop (e.g., in the JavaScript run-
time) which has no knowledge of the application’s logic,
so it would be meaningless for a callback to compute and
return a non-trivial value. The return type of a callback is
therefore the equivalent of void. That immediately means
developers can no longer use types to guide their reasoning.
Furthermore, a void-typed function or method must have
side-effects to be useful, so even local reasoning about a
program’s data depends on global reasoning about the pro-
gram’s control flow, destroying encapsulation and abstrac-
tion. Indeed, Myers has forcefully made similar critiques of
callbacks [25].

The problem of comprehension affects not only humans
but also tools. For example, static analysis and verification
engines must decipher a program’s intent from a highly
fragmented description, and must reconstruct its dataflow



from a rat’s nest of fragments of control. As previous work
on model checking Web applications has shown [23], a more
direct program structure is a great help in this regard.

The asynchronous nature of Ajax applications further
compounds these problems. Because the primary composi-
tion operator is a side-effect, interleavings and interactions
become the developer’s responsibility. The network does not
guarantee message ordering; deployment can further affect
ordering (e.g., higher server loads, or users at a greater geo-
graphic distance from servers than developers). All the usual
problems of concurrency manifest, without even the small
comfort of locking.

Despite this, callbacks appear necessary to receive noti-
fication of events, and are charged with propagating them
through the system to keep the data model up-to-date. In an
Ajax application, there are numerous sources of updates a
program must process, such as:

1. initial data from each host

2. user actions (e.g., button clicks, mouse movements)
3. updates from a data stream

4. changes to data made in another concurrent session
5

. acknowledgments from servers (e.g., in response to a
store request)

6. changes to the access-control policy

As a result, Ajax applications are agglomerations of call-
backs with largely implicit control flows. Some operations
exacerbate this: for instance, XMLHttpRequest requires a
callback (onreadystatechange) that it invokes up to four
times, providing the status in a field (not as a parameter to
the callback).

2.2 The Flapjax Alternative

Flapjax endows JavaScript with a reactive semantics. In
effect, if a developer defines y = f(z) and the value of
x changes, the value of y is recomputed automatically.
Concretely, Flapjax is JavaScript augmented with two new
kinds of data. A behavior is like a variable—it always has
a value—except that changes to its value propagate auto-
matically; an event stream is a potentially infinite stream of
discrete events whose new events trigger additional compu-
tation [14, 28]. The propagation of updated behavior values
and new events is the responsibility of the language.

Figure 2 uses the same timer example to illustrate these
concepts. The elapsed time (always has a value, but the value
keeps changing) is best represented as a behavior, while
clicks on the reset button (may be clicked an arbitrary num-
ber of times, but the developer cannot anticipate when it
will be clicked next) is best represented as an event stream.
timerB(1000) creates a behavior that updates every second
(i.e., 1000 milliseconds). The valueNow method extracts a
snapshot of the behavior’s value at the time it is invoked (i.e.,
it does not update automatically). $E defines an event stream,

var nowB = timerB(1000);

var startTm = nowB.valueNow();

var clickTmsB = $E("reset", "click").snapshotE(nowB)
.startsWith(startTm) ;

var elapsedB = nowB - clickTmsB;

insertValueB(elapsedB, "curTime", "innerHTML");

<body onload="loader()">

<input id="reset" type="button" value="Reset"/>
<div id="curTime"> </div>

</body>

Figure 2. Elapsed Time in Flapjax

in this case one per click of the button named reset. The
result is a stream of DOM event objects. The snapshotE
method transforms this into a stream of the value—at the
time of clicking—of the timer. startsWith converts the
event stream into a behavior, initialized with startTm. Fi-
nally, insertValueB inserts the value of its behavior into
the DOM. (Appendix A recapitulates all Flapjax operations
used in this paper.)

Obviously, the Flapjax code may not appear any “easier”
to a first-time reader. What is salient is both what is and isn’t
present. What is present is the composition of expressions,
even when they involve I/O. A button is no longer just an
imperative object; rather, $E("reset", "click") lets us
treat it as a value that can be composed with and transformed
by surrounding expressions. What is absent is the callbacks:
the developer simply expresses the dependencies between
expressions, and leaves it to the language to schedule up-
dates.? Thus, nowB updates every second, and therefore so
does elapsedB (which depends on nowB) and so does the
value on the page (because elapsedB is inserted into it).

It is instructive to return to the pure JavaScript version.
The bug is that the time displayed on-screen—which we
might think of as having to always represent the value of
elapsedTime (i.e., a model-view relationship)—is unde-
fined between when the user clicks on the Reset button and
when the timer next fires. This is because the program re-
sets elapsedTime but not does propagate it to the screen.
The error is subtle to detect during testing because it is a
function of when in this interval the user clicks on the but-
ton. Put differently, the developer has incurred the burden of
synchronizing the on-screen value with the model of time,
and even in such a simple program, it is possible to slip up.
In contrast, the Flapjax developer has left maintenance of
consistency to the language.

In a sense, behaviors should not surprise JavaScript de-
velopers. When a program makes a change to the JavaScript
DOM, the update is automatically propagated to the screen
without the need to notify the browser’s renderer. In other

2The callbacks for the timer and the button are set up and managed by
timerB and $E. Callback management is discussed in section 3.5.



words, the DOM already acts rather like a behavior! Flapjax
thus asks why only the bottommost layer should provide this
feature, and instead exposes to developers the same function-
ality previously reserved for a special case.

2.3 From Buttons to the Network (and Back)

The example above shows that button clicks are event
streams and clocks are behaviors. Flapjax makes it possi-
ble for developers to treat all the other components of Ajax
programs in these terms. The mouse’s location is a behavior.
A text box can be treated either as a behavior (its current
content) or as an event stream (a stream of changes), de-
pending on which is more convenient. A server is simply a
function that consumes an event stream of requests and pro-
duces an event stream of responses. This view is slowly also
being adopted by industry.?

As an illustration, consider a component that appears
in many Web applications: a text buffer with auto-saving.
(Many readers will recognize this from the mail composition
buffer of Google Mail.) This is a component we reuse in
several of our own applications (section 4). It is therefore
instructive to consider its design and implementation. We
will build the auto-save buffer incrementally to show how
a developer might approach such a problem.

At its simplest, the developer wants to create a text box
that saves every t seconds:

function mkSaveBox(t) {
var draftBox = // make a <textarea>
setInterval("...XMLHttpRequest...", t*1000);
return draftBox; }

In fact, however, the buffer should also save whenever the
user clicks the Save button. That means the function needs
two parameters:

function mkSaveBox(t, btn) {
var draftBox = // make a <textarea>
// save every t seconds or when btn clicks
return draftBox; }

Now it isn’t quite as clear what to do: using setInterval,
the save callback will run every t seconds, but is that what
we want? Should it auto-save every t seconds regardless of
Save clicks, or only t seconds after the last Save? Irrespec-
tive, should it auto-save even if there are no changes? And
then, if some user needs it to auto-save after every keystroke,
this abstraction is useless.

The problem is that the abstraction confuses mecha-
nism—setting up timers, dispatching messages, and so on—
with policy. Obtaining this separation is not straightforward
in JavaScript and most libraries fail to demonstrate it.

3In September 2006, Opera 9 added support for their new standard on
Server-Sent Events. Though we are critical of some details of their specifi-
cation, this push from a commercial vendor indicates that these ideas have
the potential for broad support.

In Flapjax, the event stream is an excellent representation
of policy. Thus, we would write,

function mkSaveBox(whenE) {
var draftBox = // make a <textarea>
// save every time there is an event on whenE
return draftBox; }

where whenE represents the policy. Armed with this abstrac-
tion, the concrete policy is entirely up to the developer’s
imagination; here are three simple examples:

mkSaveBox (timerE(60000))

mkSaveBox ($E(btn, "click"))

mkSaveBox (mergeE (timerE(60000),
$E(btn, "click")))

Respectively, these save every minute, every time the user
clicks a button, or when either of these occurs.

Now we complete the definition of mkSaveBox. First, we
create the <textarea>:

var draftBox = TEXTAREA(Q);

TEXTAREA creates a new <textarea> and exposes it as
a behavior. Flapjax defines similar constructors for all the
HTML elements.

We now define a simple function that identifies the Web
service and marshals the text buffer’s contents:

function makeRequest(v) {
return {url: "/saveValue", fields: {value: v},
request: "post"};}

We use Flapjax’s $B function to obtain a behavior car-
rying the current value of draftBox. ($B may be applied
to any input element.) When a save event fires on whenE,
we snapshot the current value of draftBox and use
makeRequest to wrap the draft into a request:

var requestsE = whenE.snapshotE($B(draftBox))
.mapE (makeRequest) ;

Given this event stream of requests we invoke the func-
tion getWebServiceObjectE, which consumes a stream of
server requests and returns a stream of server responses:

var savedE = getWebServiceObjectE(requestsE);

getWebServiceObjectE encapsulates both the call to
XMLHttpRequest and its callback. When the callback is
invoked to indicate that the response is ready, Flapjax fires
an event carrying the response.

Presentation The above provides a complete implementa-
tion of the auto-save functionality, using event streams to
represent the policy. We can go further: in our applications,
we have found it valuable for the abstraction to indicate
when the buffer is out-of-sync with the server (i.e., between
edits and responses). We use a Cascading Style Sheet (CSS)
annotation to alter the presentation by changing the editor’s
border:



var changedE = $B(draftBox).changes();

styleE = mergeE(changedE.constantE("unsaved"),

savedE.constantE("saved"));
styleB = styleE.startsWith("saved");

insertValueB(styleB, draftBox, "className");}

changes creates an event stream that fires each time the
value of $B(draftBox) changes (i.e., on each keystroke).
constantE transforms the keyboard events (which indi-
cate the buffer has changed) and the network responses
(which indicate that the server has saved) to the strings
"unsaved" and "saved" respectively. The merged event
stream, styleE, propagates events from both its arguments.
We use startsWith (seen earlier in figure 2) to trans-
form the discrete event stream into a continuous behavior,
styleB. The value carried by styleB, is the value of the
last event, which is the current state of the auto-save buffer.
We need to specify an initial value for styleB to hold before
the first event fires. Initially, the (empty) buffer is effectively
“saved”. This behavior is inserted into the DOM as the CSS
className; CSS class entries for saved and unsaved will
correspondingly alter the box’s appearance.

2.4 Higher-Order Event Streams: Drag-and-Drop

So far, we have seen event streams of keystrokes and net-
work requests. Flapjax events may, however, represent arbi-
trary actions. In particular, they can represent events much
more complex than those exposed by the DOM. To illustrate
this, we build a drag-and-drop event abstraction.

For simplicity, consider dragging and dropping a box:

<div id="target"
style="position: absolute;
border: 1px solid black">
Drag this box
</div>

The DOM provides mouseup, mousedown and mousemove
events for each element. A drag-and-drop operation begins
with a mousedown, followed by a sequence of mousemoves,
and ends with mouseup.

We wish to define a function that, given an element,
produces an event stream of drags and a drop:*

dragE :: element -> EventStream (drag or drop)

Both drag and drop events are a record of three fields. The
fields 1eft and top are the mouse coordinates. The third
field, drag or drop, carries the element being manipulated.

We begin with mousemove, which naturally leads to the
creation of drag events:

function dragE(elt) {

4Throughout this paper, we specify each function’s interface using a
Haskell-like type annotation. Because JavaScript is a latently typed lan-
guage, these should be regarded as comments, though they could be en-
forced by a static type checker; in Flapjax, they are enforced using contracts
(section 5).

return $E(elt, "mousemove") .mapE(
function(mm) {
return { drag: elt,
left: mm.clientX,
top: mm.clientY };3});}

The function above is permanently stuck dragging. We
should start responding to mousemove events only after we
register a mousedown event:

return $E(elt, "mousedown") .mapE(
function(md) {
return $E(elt,"mousemove") .mapE(
function(mm) {
return { drag: elt,
left: mm.clientX,
top: mm.clientY }})1});

Above, the mousemove event stream is created only after an
enclosing mousedown event fires. In fact, each mousedown
produces a new stream of mousemove events.

This code appears to have a runtime type error: it pro-
duces an event stream of event streams. Such higher-order
event streams are in fact perfectly legal and semantically
sound. The problem is that dragkE ultimately needs the co-
ordinates of the latest inner event stream (the latest drag se-
quence). To flatten higher-order streams, Flapjax offers the
primitive:
switchE :: EventStream (EventStream a)

-> EventStream a

switchE fires events from the latest inner event stream.
With switchE, we can easily fix our type error:

var moveEE = $E(elt, "mousedown")
.mapE(function(md) { ... as before ...
return moveEE.switchE(Q);

We have not accounted for drop events, which should
“turn off” the stream of drag events. We thus map over the
stream of mouseup events and return a singleton drop event:

var moveEE as before
var dropEE = $E(elt, "mouseup")
.mapE(function(mu) {
return oneE({ drop: elt,
left: mu.clientX,
top: mu.clientY })1});

We can combine these two event streams with mergeE,
which fires events from either of its arguments:

return mergeE (moveEE,dropEE) .switchEQ) ;

Because switchE fires events from the latest inner event
stream, when the mouse button is pressed, moveEE produces
an event stream of drags. This becomes the latest inner event
stream, and switchE thus produces a stream of drags.
When the mouse button is released, dropEE produces a
new event stream (oneE({ drop ... }). When this new



event stream arrives, switchE stops forwarding drag events
from the previous event stream. It fires the single drop event
and waits for more (in this case, we know there is just one
drop event).

When the mouse button is pressed again, moveEE pro-
duces a new stream of drags that supersede the earlier
stream from dropEE. This abstraction therefore lets us drag
the box repeatedly.

Using Drag-and-Drop The dragE function merely reports
the position where the target is dragged and dropped. It does
not, as one might expect, actually move the target. This
omission is intentional. We can easily move the target when
it is dragged:

var posE = dragE("target");
insertValueE (posE.mapE (function(p)
{return p.left}),
"target","style","left");
insertValueE (posE.mapE (function(p)
{return p.top}),
"target" , "style" , "tOp") ;

However, by separating the drag-and-drop event stream from
the action of moving the element, we’ve enabled a variety of
alternate actions. For example, the following action ignores
the drag events and immediately moves the target when it is
dropped:

insertValueE(
posE.filterE(function(p) {return p.drop;})
.mapE(function(p) { return p.left;}),
"target","style","left");

In the next example, the target moves continuously but lags
behind the mouse by 1 second:

insertValueE(
posE.delayE(1000)
.mapE(function(p) {return p.left;}),
"target","style","left");

Further possibilities include confining the drag area, abort-
ing drag operations, etc. Our example has omitted a start-
drag event, which opens up a range of new uses. The reader
might wish to also compare our approach to that of Ar-
rowlets [22], which we discuss in section 6.

2.5 Compositional Interfaces: Building Filters

We built drag-and-drop by combining event streams that
were extracted from a single DOM element. Flapjax also
allows behaviors to be built from multiple, independently-
updating sources. We will illustrate this with an example
taken from Resume, an application we discuss in section 4.

Resume presents reviewers with a list of a job candidates.
A large list is unusable without support for filtering and
sorting. Figure 3 defines two possible filters for selecting
candidates: by sex and by score.

function pickSex() {
var ui = SELECT(
OPTION({ value: "Female" }, "Female"),
OPTION({ value: "Male" }, "Male"));

return {
dom: ui,
pred: function(person) {
return person.sex == $B(ui);
11}

function pickScore() {
var ui = INPUT({ type: "text", size: 5 });

return {
dom: ui,
pred: function(person) {
return person.score == $B(ui);

133

Figure 3. Filters for Single Criteria

function pickFilter(filters) {
var options = mapKeys(function(k, _) {
return OPTION({ value: k }, k);},
filters);
var sel = SELECT(options);
var subFilter = filters[$B(sel)]();

return {
dom: SPAN(sel, " is ", subFilter.dom),
pred: subFilter.pred };};

Figure 4. Selecting Filters

Each function returns both the interface for the filter
and the predicate that defines the filter. The interface ele-
ments are built using Flapjax’s constructors, such as SELECT
and INPUT, which construct behaviors (just like TEXTAREA
in section 2.3). We can display these DOM behaviors with
insertDomB:

var filterObj = pickScore();
insertDomB(filter0Obj.dom,"filterDiv");

We can use the predicate to filter an array of candidates:

var filteredCandidates =
filter(filterObj.pred,candidates) ;

Observe in pickScore that $B(ui) is a behavior dependent
on the current score. The value of filteredCandidates
thus updates automatically as the user changes their desired
score. We can then map over the list of candidates, transform-
ing each candidate object to a string. The resulting strings
can be inserted into the DOM. Flapjax tracks these data de-
pendencies and automatically keeps them consistent.



function modalFilter(subFilter) {
var button = A({ href: "" }, "Update");
var subPred = subFilter.pred;

return {
dom: DIV(subFilter.dom, button),
pred: $E(button, "click")
.snapshotE (subPred)
.startsWith(subPred.valueNow()) };};

Figure 5. Filters with an Update Button

Real systems may have many available filters. If the user
wants only one at any given time, displaying them all would
clutter the screen. We might instead indicate the available
filters in a drop-down box, and show only the controls for
the selected filter.

Figure 4 implements a filter selector. It chooses between
filters of the form in figure 3, where each filter is an object
with dom and pred fields (of the appropriate type). The result
of pickFilter is also an object of the same type.

The function is parameterized over a dictionary of avail-
able filters; for example:

basicFilters = {
"Sex": pickSex,
"Score": pickScore };
var filterObj = pickFilter(basicFilters);

We build the drop-down box (sel) by mapping over the
names of the filters (options); we elide mapKeys—it
maps a function over the key-value pairs of an object.
The pickFilter interface displays sel and the interface
for the selected filter (subFilter.dom). The predicate for
pickFilter is that of the selected filter.

When the user chooses a different filter, $B(sel) up-
dates, and so does subFilter.dom. Since the DOM de-
pends on subFilter.dom, Flapjax automatically removes
the interface of the old filter and replaces it with that of the
new one. The developer does not need to engineer the DOM
update. The filtering predicate (subFilter.pred) updates
similarly, changing any displayed results that depend on it.

These filters update the list immediately when the user
makes a selection in the filtering GUI. An alternate, modal
interface would not affect the list until an Update button is
clicked. We can reuse our existing filtering abstractions for
modal filters. To do so, we build the interface by composing
filters, exactly as we did in figure 4. When we’re done, we
apply modalFilter (figure 5) to add an Update button:

var filterObj =
modalFilter (pickFilter(basicFilters));

As the user makes selections in the filtering interface,
subPred continuously updates in modalFilter. How-
ever, modalFilter’s predicate is not the current value of

// flickrSearchRequest :: String -> Request
// Packages the search text into a Flickr API call.
function flickrSearchRequest(req) { ... }

// flickrSearchResponse :: Response -> Listof (Url)
// Extracts URLs from a Flickr API response.
function flickrSearchResponse(resp) { ... }

// makeImg :: Url -> Element
function makeImg(url) {
return IMG({ src: url }); }

var queryE = $B("search").changes().calmE(1000) ;

var requestE = queryE.mapE(flickrSearchRequest);

var responseE = getForeignWebServiceObjectE(requestE)
.mapE (flickrSearchResponse) ;

var imgs =
DIV(map (makeImg, responseE.startsWith([])));

insertDomB(imgs, "thumbs");

Figure 6. Flickr Thumbnail Viewer

subPred, but a snapshot of its value when Update was last
clicked. As a result, we get a modal filtering interface.

By preserving the interface to a filter at each level, we
obtain a variety of substitutable components. For example,
filterObj may be any one of:

filterObj = pickScore();
filterObj = pickSex();
filterObj = pickFilter(
{ "Sex": pickSex, "Score": pickScore 1});
filterObj =
modalFilter(pickFilter(
{ "Sex": pickSex, "Score": pickScore }));

Regardless of the definition of £ilter0bj,the code to apply
and display filters does not need to change:

insertDomB(filterObj.dom, "filterDiv");
var filteredCandidates =
filter(filterObj.pred, candidates);

In Resume, we have even more general combinators such as
the conjunction and disjunction of multiple filtering options.
Though it is unrelated to the notion of filtering itself, this
idea of bundling interface with behavior is strongly reminis-
cent of Formlets [9], which we discuss in section 6.

2.6 Pipes (and Tubes) for Web Services

As Unix showed many decades ago, pipelines are good com-
ponent connectors. The getForeignWebServiceObjectE
primitive extends this to the Web. Suppose, for instance, the
developer wants to erect a pipeline from a text box to a Web
service to the screen. Assuming the HTML document con-
tains an input box with id search and a presentation ele-
ment with id thumbs, the program in figure 6 extracts each



// EventStream {data: a, loc: String }
// -> EventStream {data: a, point: Point or false}
function makeGoogleGeocoderE(requestE) {
var geocoder = new google.maps.ClientGeocoder();
var resultE = receiverE(); // primitive stream

var callback = function(d) {
return function(p) { resultE.sendEvent(
{ data: d, point: p })1}};

requestE.mapE(function(req) {
geocoder .getLatLng(req.loc,
callback(req.data));});

return resultE;};

Figure 7. Geocoder Service as Event Stream Transformer

query typed into the search box, sends the query to the photo
sharing site £1ickr.com, obtains a list of thumbnails, and
displays them in the DOM.

In the definition of queryE, calmE builds a “muted”
event stream for a given time period. By calming an event
stream associated with a buffer’s keystrokes for a second,
the developer can keep the system from responding to every
keystroke, waiting for a pause when the user is not typing.
We use this method frequently to provide smoother user
interfaces.

2.7 Mashups: Composing Web Services

If Web services expose themselves as consumers and pro-
ducers of event streams, they naturally fit the Flapjax mold.
However, many external Web services are not designed this
way. Some such as Twitter (www.twitter.com, which lets
users broadcast short messages called tweets) return re-
sponses containing JavaScript code that must be eval’d
to obtain a local callback. Others, such as Google Maps
(maps.google. com), supply extensive (callback-based) li-
braries. However, with just a little effort, these callback-
based APIs can be turned into event stream transformers
that fit naturally into Flapjax applications. We first show
this adaptation, then use it to build a mashup of Twitter and
Google Maps.

Google Geocoder The Google Geocoder is a part of the
Google Maps API. It accepts the name of a location (e.g.,
“Providence, RI”) and, if it successfully interprets the name,
returns its latitude and longitude. The lookup occurs asyn-
chronously on Google’s servers, so it is unsurprising that the
Geocoder function uses a callback:

getLatlng :: String * (Point -> void) -> void
whose use tends to follow this template:

var data =

var callback = function(p) { ... };

getLatLng(data.location,callback) ;

An application that uses getLatLng continuously needs to
associate points returned in the callback with data about the
corresponding request; we can encapsulate in a closure:

var callback = function(d) {
return function(p) { ... }};
getLatLlng(data.location,callback(data));

We will package this pattern into an event stream trans-
former from strings to points, along with an arbitrary datum
that is passed from each request to its associated result:

EventStream { data: a, loc: String }
-> EventStream { data: a, point: Point }

We can easily map over a stream of requests:

function makeGoogleGeocoderE(requestE) {
var callback = ...;
requestE.mapE (function(req) {
getLatlng(req.loc,callback(req.data)); });}

However, the result is not available within the body of
function(req) { ... },so the event stream above does
not produce meaningful events. Since results arrive asyn-
chronously, they are conceptually a new event stream. The
operation receiverE creates a primitive event stream with
no sources, so it does not fire any events:

var resultE = receiverE();
var callback = ...;
requestsE.mapE(...);
return resultE;

However, we can imperatively push an event to it using
sendEvent. Since points are sent to the callback, the body
of our callback becomes:

resultE.sendEvent ({ data: d, point: p });

The complete function is shown in figure 7. It exposes it-
self as a pure Flapjax event transformer, completely hid-
ing the internal callback. Using this pattern, we can erect
a similar reactive interface—which can then be treated
compositionally —to any Web service with a callback-based
API [20].

Twitter/Google Maps Mashup Now that we’ve seen how
callback-based Web services can be turned into event stream
transformers, we can combine Web services into a mashup.
Consider a simple mashup that takes Twitter’s most recent
public tweets and plots them on a Google Map. This mashup
operates in three steps: (1) Fetch the live feed of public
tweets from Twitter. Tweets are accompanied by the location
(e.g.,“Providence, RI”) of their sender. (2) Using the Google
Maps Geocoder API, transform these locations into latitudes
and longitudes. (3) If the Geocoder recognizes the location,
plot the corresponding tweet on an embedded Google Map.
Since we have a live feed, repeat forever.

Figure 7 shows the code for the Geocoder event stream.
We can similarly build a public tweet event stream:



var googleMap = new google.maps
.Map2(document .getElementById("map"));
googleMap.setCenter(
new google.maps.LatLng(0, 0), 2);

// Fetch the live feed of public tweets
var tweetE = getTwitterPublicTweetsEQ);

// Transform locations into coordinates
var pointsE = makeGoogleGeocoderE(
tweetE.mapE(function(tweet) {
return { data: tweet.text,
location: tweet.user.location };}));

// Elide points the Geocoder did not recognize
makeMapOverlayE(googleMap,
pointsE.filterE(function(x) {
return x.point != false; }));

Figure 8. Mashup of Twitter and Google Maps
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Figure 10. After a While, More Pins Appear

getTwitterPublicTweetsE ::
-> EventStream Tweet

We are using Google Maps to plot points returned by the
Geocoder. It thus suffices to build an event steam consumer:

makeMapOverlayE ::
GoogleMap * EventStream { data: String,
point: Point }
-> void

In the interest of space, we elide the definitions of these
functions. However, they are similar in length and in spirit
to the Geocoder function.

Figure 8 shows the code for our mashup (figure 9 and
figure 10 show two instances of its execution). Aside from
the initialization of the embedded map, the mashup is al-
most directly a transcription of strategy outlined in prose
above. Furthermore, it employs reusable abstractions that
other mashups can also share.

2.8 From Web Services to Persistent Objects

Web services are good abstractions for procedural and
message-passing interfaces, such as for finding a list of
movies playing on a particular evening. They do not, how-
ever, directly model shared, mutable, persistent objects, such
as a meeting in a group calendar. The Flapjax system pro-
vides a custom persistent object store to save such objects,
and a client-side library to interface with it.>

The server maintains notions of identity for users and ap-
plications (with standard authentication details). It presents
each application with a filesystem-like tree, which develop-
ers can also browse through a trusted Web interface. The
operation writePersistentObject associates an event
stream with a location—which is a path through the tree—
while readPersistentObject reflects the values stored at
that location into a stream. Thus, referring to the draft-saver
from section 2.3:

writePersistentObject (draftBox.changes(),
["draft"]);

saves drafts at the top-level “file” "draft". In practice, an

application will wrap writePersistentObject in an ab-

straction. This can be used to erect another policy-mechanism
separation: writePersistentObject is a mechanism, but

various filters can be applied to the event stream it consumes

to perform, e.g., rate limiting. readPersistent0Object re-

verses the direction of binding to reflect persistent objects

in the application, with extra parameters for the initial value

and polling rate.

Access Control In keeping with the filesystem analogy,
every persistent object is subject to an access-control policy.
Naturally, this set of permissions can also change at any
time. User interface elements that depend on the permissions
should also update their appearance or behavior.

The Flapjax primitive readPermissionsB produces a
behavior representing the current permissions of a location
in the persistent store. The application can use its value to
drive the user interface. For instance, if permsB is bound to
the permission of a store location,

INPUT ({type: "text",
disabled: !(permsB.has("WRITE", true))});

3 Flapjax applications do not have to use the object store. This is a proof-of-
concept server.



function EventStream(sources,update) {
this.sources = sources;
this.sinks = [ ]; // filled in by sources
for (var i = 0; i < sources.length; i++) {
this.sources[i].sinks.push(this); }
this.update = update; }

Figure 11. The Event Stream Constructor

declaratively ties the disabling of the input box with lack of
write permission. Thus, the user interface will automatically
update in step with changing permissions.

3. Implementation

The theory of Flapjax is rooted in signal processing: events
and behaviors are essentially signal-processing abstractions.
The theoretical underpinnings of Flapjax can be found in
Cooper’s dissertation [10]. Here, we focus on the implemen-
tation strategy that enables the above programs to run.

3.1 The Evaluation Model

The central idea behind Flapjax is push-driven dataflow eval-
uation. Flapjax converts JavaScript programs into dataflow
graphs. Dataflow graphs are mostly-acyclic directed graphs
from sources (clocks, user inputs, the network, etc.) to sinks
(screen, network, etc.). When an event occurs at a source,
Flapjax “pushes” its value through the graph. A graph node
represents a computation; when it receives an event, a, it ap-
plies a function f (representing the computation) to a and
may further propagate f(a) to its children. This push-based,
demand-driven evaluation strategy is a good match for sys-
tems with many kinds of external stimuli that do not obey a
single central clocking strategy. We discuss other strategies
in section 6.

3.2 Dataflow Graph Construction

Though we have presented event streams and behaviors as
distinct entities, the astute reader will have guessed that they
are almost duals of each other. Given a behavior, issuing
an event whenever its value changes yields a corresponding
event stream. Given an event stream and an initial value,
continuously yielding the most recent value on the stream
(and the initial value before the first event appears) gives a
corresponding behavior. In Flapjax, nodes in the dataflow
graphs are event streams while behaviors are derived objects.
We describe the construction of a dataflow graph of event
streams below.

To developers, an event stream is an abstract data type
that may only be manipulated with event stream combinators
(e.g., mapE, calmE, etc). Internally, an event stream node is
implemented as an object with three fields:

sources listof (EventStream)
sinks listof (EventStream)
update a -> (b or StopValue)

// EventStream a * EventStream a -> EventStream a
function mergeE(srcl,src2) {
var update = function(a) {
return a; }
return new EventStream([srcl,src2],update); }

// (a -> b) * EventStream a -> EventStream b
function mapE(f,src) {

var update = f;

return new EventStream([src],update); }

// (a -> Bool) * EventStream a -> EventStream a
function filterE(pred,src) {
var update = function(a) {
if (pred(a)) {
return a; }
else {
return StopValue; 1}};
return new EventStream([src],update); }

// EventStream (EventStream a) -> EventStream a
function switchE(srcE) {
var outE = new EventStream([], function(a) {
return a; });

var prevE = null;

var inE = new EventStream([srcE], function(aE) {

if (prevE) {
outE.sources.remove (prevE) ;
prevE.sinks.remove(outE); }

prevE = aE;

outE.sources.push(aE) ;

aE.sinks.push(outE);

return StopValue; });

return outE; }

Figure 12. Implementation of Event Stream Combinators

sources and sinks specify a node’s position in the graph.
When a value (of type a) is pushed to a node, Flapjax applies
the node’s update function to the value. If update returns
the StopValue sentinel, the value does not propagate further
from the node. Otherwise the result, b, is propagated further
by Flapjax’s evaluator, as described in section 3 .4.

Consider mergeE, which builds a node that propagates all
values from both its sources without transforming them:

merged = mergeE(srcl,src2)

mergeE must build a new node by specifying the sources,
sinks, and updater. The sources are the event streams srcl
and src2. The update function propagates all values:

function update(a) { return a; }

Since Flapjax is push-driven, the node bound to merged
must know the sinks to which it pushes values. However,



we can defer specifying the sinks until merged is used as
a source. To consistently follow this pattern, mergeE must
set the node bound to merged as a sink for src1 and src2.
We abstract this pattern into the EventStream constructor
(figure 11), which only requires sources and update as ar-
guments. mergeE and other event stream combinators (fig-
ure 12) are therefore pure JavaScript functions, and so are the
update functions. This ensures that individual expressions
do not change their meaning relative to JavaScript, a prob-
lem that might ensue if we wrote a specialized interpreter to
implement the dataflow evaluation strategy.

Derived Behaviors A behavior in Flapjax is an extension
of event streams. A behavior node maintains its current
value, in addition to sources, sinks, and an update function.
The initial current value is an additional parameter of the
behavior constructor. The update function computes a new
value n; if n is different from the current value it sets n as
the current value and propagates to all sinks, otherwise it
returns StopValue to prevent further propagation.

3.3 The Compiler

We mentioned in section 1 that Flapjax can be viewed as a
language or, with a little extra work, a library. Now we can
explain precisely what this extra work is.

The compiler consumes files containing HTML, JavaScript
and Flapjax. Flapjax code is identified by the

<script type="text/flapjax">

directive. The compiler transforms Flapjax code into JavaScript

and produces standard Web pages containing just HTML and
JavaScript. It includes the Flapjax library and elaborates
Flapjax source code to call library functions as necessary.
Flapjax source code has JavaScript’s syntax, but the com-
piler’s elaboration gives it a reactive semantics. Further-
more, the compiler allows Flapjax and JavaScript code to
seamlessly interoperate. This strategy of transparent reac-
tivity [11] has great advantage for beginning users and in
teaching contexts. We outline its main components below.

Implicit Lifting The principal task of the compiler is to
automatically /ift functions and operators to work over be-
haviors. The compiler does so by transforming function ap-
plications to invocations of 1iftB. This allows us to write
expressions such as

timerB(1000) + 1

where JavaScript’s + operator is applied to the timerB (1000)
behavior. The compiler transforms the expression above to
code equivalent to:

1iftB(function(t) { return t + 1; },
timerB(1000))

The function 1iftB creates a node in the dataflow graph
with timerB(1000) as the source and

function(t) { return t+1 }

as the update function.

Without the compiler, such transformations must be per-
formed manually. In practice, this appears to be less onerous
than it sounds, as our experience suggests (section 4). With-
out the compiler, the development cycle involves just editing
code and refreshing the page in the browser. The compiler
introduces another step in the development cycle which may
sometimes be inconvenient.

JavaScript Interoperability The compiler enables Flapjax
code to interoperate with raw JavaScript. Flapjax already
shares JavaScript’s namespace, so either language can read-
ily use identifiers defined in the other. Consider Flapjax call-
ing JavaScript functions. In the simplest case, if a JavaScript
function is applied to behaviors, the compiler can lift the
application. The JavaScript function is thus applied to the
values carried by the behaviors, rather than the behaviors
themselves (which it presumably would not comprehend).
Whenever a behavior changes, the function is reapplied.
For example, suppose filter is defined in JavaScript:

filter :: (a -> Bool) * listof(a) -> listof(a)

and consider the following Flapjax code:

var tock = filter(function(x) {
return (x % 2) == timerB(1000) % 2;
}, [0,1]);

filter expects a predicate and a list. The result of tock,
however, is not a boolean, but a behavior carrying a boolean.
The compiler thus wraps the predicate so that the current
value of its result is extracted on application. Furthermore,
when the result is invalidated (as it is every second),filter
is reapplied. As a result, tock is a behavior that alternates
between [0] and [1].

In the other direction—JavaScript calling Flapjax code —
the compiler performs no transformations. There is no need
to do so, since the natural way to invoke Flapjax from
JavaScript is to treat it as a library with explicit calls to
the event stream and behavior combinators.

Inline Flapjax The compiler provides one more conve-
nience that we have not yet discussed in this paper, called
inline Flapjax. It recognizes the special matching tokens {!
and '} ¢ in any HTML context and treats the text contained
within as Flapjax code. This code is expected to evaluate to
a behavior. The compiler inserts the behavior into the docu-
ment at that point without the need for additional code.

For instance, given some function validCC that validates
a credit card number and these JavaScript declarations —

function validColor(valid) {

return valid ? "aqua" : "cyan"; }
var ccNumField = $B("ccNum");
var ccNumValid = validCC(ccNumField) ;

—this inline Flapjax term

6 Pronounced “curly-bang”.



<input id="name"
style={! { borderColor:
validColor (ccNumValid)} '}
disabled={! !'ccNumValid !}/>

creates an input element that is enabled or disabled depend-
ing on the validity of the credit card number, and whose bor-
der color is correspondingly aqua or cyan. In particular, the
JavaScript object { borderColor: ... }isautomatically
converted into a CSS style specification string.

While inline expressions can become unwieldy in gen-
eral, we find them especially useful for writing program ex-
pressions such as the validator above. In particular, when the
validity of an element depends on several data, it is easier
and clearer to express this as a localized functional depen-
dency rather than diffuse it into callbacks, which inverts the
dependency structure.

3.4 Propagation

The recursive propagation model (which is implemented
with trampolining [31], to prevent stack overflow) requires
additional explanation, particularly to prevent some undesir-
able behavior. Consider the following expressions, where y
is some numeric behavior:

var a =y + 0;
var b = y + a;
var ¢ = b + 1;

var d = ¢ % 2;

We would expect b to always be twice y, c to be odd, d to
be 1, and so on. Unfortunately, nothing in our description
above guarantees this. The update from y may recompute b
before it recomputes a, which might trigger the subsequent
recomputations, resulting in all the invariants above being
invalidated. Of course, once the value of a updates, the
invariants are restored. This temporary disruption is called
a glitch in signal-processing lingo. (There is another, subtle
problem above: some nodes may be computed more than
once. Not only is this wasteful, this computation may be
noticed in case the updater functions have side-effects.)

Fortunately, there is a simple solution: to use topological
order. This prevents nodes from being evaluated before they
should, and avoids repeated computation. To perform this,
the node data structure tracks its partial-order rank in the
dataflow graph. The Flapjax evaluator calls nodes’ update
functions (figure 12) in topological order. Instead of propa-
gating values immediately, the evaluator inserts them into a
priority queue in topological order.

The only obstacle to topological ordering is the presence
of cycles in the graph. Cyclic dependencies without delays
would, however, be ill-defined. Flapjax therefore expects
that every cycle is broken by at least one delay (either the
primitive delayE or a higher-level procedure, such as inte-
gration, that employs delays). This restores the delay-free
sub-graph to a partial order.

3.5 Primitive Event Streams and Callbacks

Flapjax programs do not directly use callbacks, so the Flap-
jax library encapsulates callback management code. The
simplest function that encapsulates a callback is $E, which
encapsulates a DOM callback and exposes it as an event
stream of DOM events. For example:

var moveE = $E(document.body, "mousemove");

As we showed for the Geocoder (figure 7), we can use
sendEvent to encapsulate the callback-based DOM API:

function $E(elt, evt) {
var stream = receiverE();
var callback = function(e) {
stream.sendEvent(e); };
elt.addEventListener(evt, callback);
return stream; }

However, $E above never removes the callback. (It does
not call the DOM function removeEventListener.) If the
event stream moveE becomes unreachable from the rest of
the program, we may expect it to be garbage collected. How-
ever,addEventListener creates an internal reference from
elt to callback. Therefore,as long as elt is reachable, the
event stream fires in perpetuity.

This scenario occurs when we have higher-order event
streams, such as the drag-and-drop example (section 2.4),
where a new stream of mousemove events is created for each
mousedown event. switchE makes the previous mousemove
unreachable by the program, though the element being
dragged keeps a reference to the mousemove callback. Since
the element is never removed from the DOM, the previous
mousemove callback is continually invoked. After a number
of drag operations, the browser becomes noticeably slower.

We solve this issue by adding an isDetached field to
all event streams. If isDetached is set, the callback in $E
removes itself, instead of propagating the event:

function $E(elt, evt) {
var stream = receiverE(Q);
var callback = function(e) {
if (stream.isDetached) {
elt.removeEventListener(evt, callback); }
else {
stream.sendEvent (e); }};
elt.addEventListener(evt, callback);
return stream; }

isDetached is initialized to false. In the definition of
switchE (figure 12), we set prevE.isDetached = true
when removing prevE from the dataflow graph.

However, prevE may not itself be a $E expression, so
the isDetached flag of its sources must be updated as well.
For any event stream isDetached is set if all its sinks are
detached. We compute this expression while propagating
values (section 3.4).



3.6 Library Design

The Flapjax library is unusual in that it serves both the
compiler (as its runtime system) and developers using it
directly. In both capacities it needs to be efficient; the latter is
unusual as most languages’ runtime systems are not directly
used by developers. Here we discuss some design decisions
that have proven important over several years of use.

Functions versus Objects Flapjax encourages making
Web applications more functional in style. This can, how-
ever, lead to deeply nested function applications, which
are syntactically alien to many JavaScript developers. We
have therefore found it convenient to make all the stan-
dard functions available as methods in the Behavior and
EventStreanm prototypes. This means that instead of

var name = calmE(changes($B("name")), 300);
developers can write
var name = $B("name").changes().calmE(300);

which is arguably more readable than standard functional
notation, since the left-to-right order of operations corre-
sponds to the direction of dataflow. We do offer all these
operations as standard functions also, so developers can use
whichever style they favor.

Lifting Constants The compiler inserts behavior combi-
nators automatically. To aid developers who do not use the
compiler, Flapjax’s behavior combinators lift constant argu-
ments to constant behaviors; this does not require compiler
support. For example, the type of timerB is

timerB :: Behavior Int -> Behavior Int

so that the interval may itself vary over time. Library users
may, however, simply write timerB(1000). The function
will treat 1000 as a constant behavior.

Element Addressing The library includes many DOM ma-
nipulation functions that consume HTML elements. There
are many ways for JavaScript functions to acquire DOM ele-
ments; one of the more common techniques is to give them
a name (an id). All functions that consume elements also
accept strings that name elements.

Reactive DOM Elements Developers may be concerned
about the cost of Flapjax’s reactive element constructors.
Perhaps hand-coding imperative DOM updates would be sig-
nificantly faster?

Indeed, a naive implementation of a constructor would
rebuild the entire element on any update. For example,

DIV(timerB(1000))

might construct a new <div> every second. Our implemen-
tation updates changes in-place, so only one <div> is con-
structed, but its text updates every second. This strategy sig-
nificantly ameliorates such efficiency concerns.

4. Evaluation

All the Flapjax code above is real. Developers can run
the Flapjax compiler on Flapjax code to generate pure
JavaScript applications which can then be deployed. As a
result, all these programs execute on stock browsers.

Flapjax has been public since October 2006, and has
been used by several third-parties (i.e., non-authors) to build
working applications:

Data Grid The Data Grid application’ was developed by a
commercial consulting firm based in London. They were
able to successfully construct their application in the lan-
guage, and reported that it resulted in “shorter code and
a faster development cycle”. They did identify places
where the implementation could be faster, an issue we
discuss in greater detail below. They found that one fringe
benefit of using Flapjax was that it insulated developers
“from most of the cross-browser issues”, which are con-
siderable in JavaScript, due to notoriously poor standard-
ization of Web technologies.

Interactive Wiki Another group used Flapjax to build a
Wiki system that updates on-the-fly. Their evaluation
largely concurred with that of the Data Grid develop-
ers. They added that behaviors, while a convenient and
intuitive abstraction, could cause a performance hit while
initializing an application: the initial values are better
defined statically with HTML when possible. (We con-
jecture that this is at least partially due to the Flapjax im-
plementation’s event-orientation, with behaviors treated
as a derived type.) Thus, much of the computation in their
Wiki system is done in terms of events.

Network Monitor Another developer has used Flapjax to
construct a network monitoring client. A network of
workstations each expose status information as a Web
service; the monitor obtains this information as event
streams and collates and combines them to present indi-
vidual and collective status information.

In addition there are several applications that we have
built ourselves. One example is TestFest, which enables stu-
dents to separately upload their homework programs and test
cases; each student’s test is run against every other student’s
homework. This application has been used for two years at
Brown and at another university.

More significantly, we have written and deployed Resume
(resume.cs.brown.edu) and Continue 2.0 (continue?2.
cs.brown.edu).Resume is a program for managing the ap-
plication and review process for academic jobs; Continue is
a conference paper manager. Though these sound similar,
the two workflows—and hence applications—are quite dif-
ferent. Both applications are in daily use. Resume has been
used for job searches for three years in multiple academic

"http://www.untyped.com/untyping/2007/01/19/
flapjax-in-action/



departments, and has been solicited by others who noticed
it while submitting letters. Continue has been used by over
twenty-five workshops and conferences.

Both applications use Flapjax as a library; they feature
fewer than 10 1ifts per KLOC, suggesting that eschew-
ing the compiler to use the library directly is not a major
impediment. With event-streams and reactivity, it was easy
to reproduce and cleanly encapsulate the kinds of features
users are accustomed to seeing in commercial applications.
For instance, the auto-save buffer example of section 2.3 is
inspired by that of Google Mail; in our applications, it is
used to save reviews and comments. Searching also reacts to
keystrokes without the need for a Search button, just as in ap-
plications like iTunes. We also use reactivity to (judiciously)
affect styling to notify users of unsaved data.

Performance 1t is impossible to measure the “perfor-
mance” of a language; we can only measure the perfor-
mance of individual programs. The problem is exacerbated
when programs are highly interactive, because performance
is equally a function of the nature of inputs used to drive
applications. It is, nevertheless, worth asking what impact
the Flapjax abstractions have on program performance. We
answer this question at several levels.

At the highest level, we argue that Flapjax simply auto-
mates much of the work that a JavaScript developer would
have done by hand: to propagate values through computa-
tions and keep them consistent. A developer can certainly
use the full force of human knowledge to short-circuit some
evaluation; however, these same attempts often produce in-
consistent or erroneous Web applications in practice.

The most significant cost in Flapjax is from scheduling
in the dataflow graph. This breaks what might have been
one large call-by-value evaluation into several small call-by-
value fragments interspersed by dataflow graph manipula-
tion and traversal. We have used several (sound) heuristics
to eliminate constants and to compact chains of nodes into
single nodes, inspired by the lowering work of Burchett, et
al. [4]. Because these have yielded reasonable performance
we have not investigated this topic further, but there is con-
siderable opportunity for performance improvement. Qual-
itatively, we have used Flapjax to develop several anima-
tions and games. Flapjax smoothly renders these programs.
In addition, Resume and Continue have full-featured GUIs
built entirely in Flapjax. These systems have been tested
and used successfully with hundreds of records displayed on
screen. Recent advances in the performance of commercial
JavaScript evaluators have made the runtime cost of dataflow
evaluation negligible.

While dataflow evaluation might slow down programs, it
also has the potential to speed them up through parallel exe-
cution. One of the major obstacles to parallelism is the use of
unfettered, dependency-creating side-effects; these are pre-
cisely what good Flapjax programming style eliminates. In-
deed, David Patterson’s plenary speech [29] at the Interna-

tional Symposium on Low Power Electronics and Design
(2007) outlined a research project at Berkeley that exploits
Flapjax for parallelism [21].

Finally, as mentioned above, Flapjax is a working lan-
guage. In particular, each of Resume and Continue 2.0 is
accompanied by a demo mode, which automatically creates
an instance of a job search or conference, respectively, and
lets the user experiment with the program, without need for
an account. Readers are invited to try these applications for
themselves to get a feel for how much perceived overhead
dataflow evaluation might cause

S. Perspective

Our design choices in Flapjax raise a variety of interesting
issues. We discuss these below.

Consistency as a Linguistic Primitive One of the central
goals of Flapjax is to explore the idea of consistency as a
linguistic primitive. The motivation for the dataflow eval-
uation model is to enable propagation of updates, and the
complexities of propagation (section 3.4) are to make this
notion semantically sensible. Our propagation algorithm en-
sures that the developer never sees a value that is inconsis-
tent with the text of the program. This means developers can
reason algebraically about their programs (a task simplified
because programs tend to become much less imperative) —
for instance, they can refactor their program using algebraic
reasoning, while knowing that so long as they preserved the
algebraic meaning, the program’s behavior will not change
upon execution.

We view consistency as analogous to garbage collection:
a sensible requirement that is so pervasive that languages
should try to support and optimize it. As with garbage col-
lection, developers do sometimes need to manually inject be-
havior. For instance, valueNow samples a behavior at a par-
ticular instant; similarly, snapshotE samples a behavior at
the instant an event fires (section 2.2). We find that the num-
ber of uses of these primitives is small: 14 and 19, respec-
tively, in Continue, and 19 and 10, respectively, in Resume.
This is from about 4.3 KLOC of Continue and 2.3 KLOC of
Resume, including about 1 KLOC of shared code. This sug-
gests that consistency is indeed the right default. It would be
interesting to study traditional JavaScript codebases to deter-
mine how much programming effort is expended in the other
direction: to obtain what Flapjax provides intrinsically.

Security 'We have not discussed security, which is a per-
vasive concern in Web applications, beyond access con-
trol (section 2.8). This is partly intentional: security means
so many different things in this context (avoiding cross-

8In demo mode, the application runs in one frame while the demo
program —running in the other frame —points to elements of the first and
suggests what the user might click on. The demo advances by the interac-
tions of the user with the application under demonstration. In other words,
the demo framework is itself a reactive application. Naturally, it too is writ-
ten in Flapjax.



site attacks, preventing server attacks, detecting malicious
dataflows, and so on) that it is impossible for a language to
cover it all. Rather, we believe that by reducing the num-
ber of callbacks, Flapjax enables better program analysis,
which is a prerequisite to many security analysis techniques.
Separately, we have already applied control flow analysis to
JavaScript and Flapjax for intrusion detection [18].

Debugging and Contracts The state of debugging support
for JavaScript is still quite primitive, and is even more so
for Flapjax. Unfortunately, debugging Flapjax can be some-
what challenging because debuggers expose the underlying
evaluation mechanism. This exposes the convoluted control
flow of event-driven Web applications that Flapjax abstracts
away.

Halting on program errors in the innards of Flapjax’s
implementation is not useful. To avoid this, we have created
a higher-order contract system for Flapjax that accurately
tracks blame [19]. For example, the contract of switchE is:

EventStream (EventStream a) -> EventStream a
Consider, for example, this illegal use of switchE:
switchE (timerE(60000))

The run-time error, “expected event stream of event streams,
received event stream of integers”, occurs in the innards of
switchE, a whole minute after the line executes. Stepping
through this code achieves nothing. The contract system,
however, identifies this call-site as the source of the error.

The contracts have an ancillary benefit: they precisely
document the Flapjax API, which has a straightforward type
structure. This is especially valuable in a language without a
formal static type system.

How Many DOMs? (or, Beyond Functions to Relations)
Because the DOM is a predefined, readily available data
structure that often reflects the shape of program data,
JavaScript developers routinely conflate the display model —
the DOM —with the data model. Not only is this an inappro-
priate conflation that hinders later maintenance, it can also
result in bugs: for instance, browsers can behave in unde-
sirable ways if the same DOM node is inserted as a child of
two different parents (which can happen when the actual da-
tum is a DAG or graph, not a tree). Separating the true data
model from the display model is known in Web parlance as
a Dual-DOM approach [2].

Unfortunately, maintaining two models (or three, count-
ing the persistent store) greatly complicates the developer’s
job. Because changes on one side may trigger updates to
the other, the OpenAjax alliance observes [2], “It is usu-
ally necessary to establish bidirectional event listeners be-
tween the Ajax DOM and the Browser DOM in order to main-
tain synchronization” (and this ignores the third model). Not
only does this mean many more callbacks (with interference
caused by updates), developers must take care to not cause
cascading cyclic updates.

Recognizing that these situations create relational, rather
than functional (or directed) dependencies, we have exper-
imented with a limited form of principled relational sup-
port in Flapjax. Specifically, we have implemented vari-
ants of both lenses [15] and constraint maintainers [24]
adapted to the JavaScript object system. Our experiments
show that lenses transparently and consistently maintain the
model/view relationship in a way that requires less focus on
when the models change; using Flapjax along with lenses
allows developers to use modular reasoning about the oc-
currence of these changes. Conceptually, developers view
the various models—interface, client, and server—as dis-
tinct, but conventional practice confounds this distinction
with consistency maintenance and race prevention. Flapjax
with lenses reifies this conceptual distinction in code.

6. Related Work

A key feature that distinguishes Flapjax from other Web pro-
gramming libraries is its adoption of functional reactive pro-
gramming (FRP) [14, 28]. In FRP, instead of using callbacks
to respond imperatively to events, a program defines signals
that vary implicitly as other values in their defining equations
change. While this essential idea originates from dataflow
programming [6, 33], FRP applies the idea in a dynamic and
higher-order setting. The specific approach taken in Flapjax
is mainly informed by FrTime [10, 11], a call-by-value in-
stantiation of the FRP model. Unlike FrTime, Flapjax is ex-
plicitly designed for use as a library (a design choice that
has proven very valuable in hindsight); it models interac-
tions with a Web page’s DOM, which requires the ability to
define signals that can model richly structured mutable data
in a meaningful way; it uses events to interface with Web
services; and it handles the inconsistencies and complexities
of JavaScript. FrTime and Flapjax differ from the other FRP
systems by employing a purely push-based, event-driven up-
date strategy; the Haskell-based systems are pull-based (and
driven by polling). Frappé [12], a Java FRP library, uses a
hybrid push/pull evaluation strategy. Like Flapjax in library
mode, Frappé is closer to a library than a language, not sup-
porting the transparent reuse of host-language programs in a
reactive context.

A number of other languages with dataflow-like fea-
tures have been developed in recent years. For example, Ya-
hoo! Pipes (pipes.yahoo.com) is an interactive, graphical
domain-specific language for assembling pipelines that fil-
ter and aggregate dynamic Web content. Nodes subscribe to
and produce feeds, which are updated automatically when-
ever their source changes. Beyond the Web, Streamlt [32] is
a language for constructing networks of stream processors,
targeted in particular for high-performance systems with
relatively stable graph structures. The individual Streamlt
processors operate imperatively on their input and output
streams, but are assembled into a declarative graph. Au-
rora [5] and Borealis [7] offer similar capabilities to Streamlt



but, instead of having developers write imperative process-
ing nodes, they support query evaluation for a declarative,
high-level SQL-like language over streaming data. They also
provide built-in operators for computing various aggregates
(e.g., average, maximum) over sliding time windows. All of
these languages deal exclusively in discrete data, in contrast
with FRP systems like Flapjax, which also provide distinct
notions of continuous behaviors and support general purpose
programming such as building GUIs, I/O operations, etc.
Systems such as Open Laszlo (www.openlaszlo.org),
Flex (www.adobe . com/products/flex),and JavaFX (www.
sun.com/software/javafx) have also applied dataflow
programming ideas to the Web. They permit user interface
elements to be bound to expressions: whenever the value of
the element changes, the whole expression is reevaluated and
the result assigned to the bound variable. This means, how-
ever, that behaviors are no longer first-class values. These
systems have very limited or no support for higher-order
reactivity —the ability to dynamically rebind a variable in
response to an event. Furthermore, these systems do not de-
scribe any guarantees comparable to our glitch-freedom.
Various languages and systems have been designed around
the idea of constraint programming, which is a general-
ization of dataflow evaluation. For example, ThinglLab [3]
is an object-oriented constraint-programming language de-
signed for expressing and running simulations. Like Flapjax,
it maintains dependencies between objects and automati-
cally propagates updates when values change. The language
supports bidirectional constraints and employs a sophisti-
cated constraint-solving engine, which allows it to express
programs that Flapjax cannot support directly. However, the
Flapjax language is richer in other ways, including support
for higher-order functions and reactivity, as well as exposing
separate notions of discrete events and continuous behaviors.
Kaleidoscope [16] allows for mixed imperative and con-
straint programming with multidirectional constraints. It
maintains consistency using a constraint solver with sup-
port for a hierarchy of constraint strengths, as well as tem-
poral control over constraints, like our events and behav-
iors. Kaleidoscope conflates intra-model constraints and
model/view constraints, while ours are orthogonal libraries
built on top of Flapjax. Our model/view constraint sys-
tem, lenses [15], guarantees well-behavedness of composed
constraints—it is unclear what Kaleidoscope’s constraint
solver guarantees of composed and user-defined constraints.
Other related systems that support constraint program-
ming include the Garnet [26] and Amulet [27] user-interface
toolkits. Although these employ a unidirectional constraint-
propagation algorithm, they do support cyclic constraint net-
works, without the need for explicit time delays as Flap-
jax requires. Instead, they resolve cycles with a simple
depth-first “once-around” algorithm, which stops propagat-
ing when it returns to a node that has already been updated.

Arrowlets [22] allow developers to specify the control
flow of JavaScript programs, across multiple event handlers,
using the functional programming concept of arrows. Like
Flapjax, Arrowlets abstracts away underlying callbacks.
This makes it possible to reason algebraically about control
flow across multiple callbacks. However, for an Arrowlet
to have a visible effect on the DOM, an arrow must cause a
side-effect.

This is apparent in their central drag-and-drop example.
Arrows specify a state machine, but the actual effects of
dragging are scattered throughout individual arrows, despite
the fact that they are abstracted into a “proxy”. The proxy
methods are essentially callbacks—their return values are
discarded. Arrows do allow the DOM mouse events to be
composed into a new drag-and-drop event stream. However,
the arrow-bassed drag-and-drop abstraction has the same
callback-based interface as the DOM. Interesting behavior
that uses the results from the various drag-and-drop call-
backs will require shared state.

jQuery (jquery.com) allows DOM transformations and
event handlers to be sequenced and applied to destructively
update collections of elements. Flapjax focuses the flow of
values through the program, sourced from arbitrary, hetero-
geneous data sources, including the DOM. Data-flow evalua-
tion is orthogonal to the specification of sequences of effects.

Web application frameworks such as Ruby on Rails
(rubyonrails.org) and Django (djangoproject.com)
enable easily creating CRUD (create-read-update-delete)
interfaces. They focus on simplifying the object-relational
mapping at the database level, and impose good practices
such as model-view-controller separation. They are, how-
ever, primarily designed for the server, whereas Flapjax con-
nects to any Web service; they also do not offer linguistic
support comparable to Flapjax’s abstractions.

Formlets [9] address the problem of building Web forms
and extracting their input compositionally. Our composi-
tional filters example (section 2.5) is in the same spirit.
While Flapjax does not provide the syntactic sugar of form-
lets, we arguably also do not miss it: in our filter example,
we simply use the language’s existing binding mechanism
to name the sub-filter (subFilter) and use it in subsequent
expressions. We are not constrained by the type-structure of
applicative functors and synchronous form submission; as a
result we believe that our composed filter example is an in-
stance of their “impossible” formlet, one that renders before
producing a result.

Links [8] addresses the problem that Web programs in-
herently span several tiers—the browser, the application
server, and the persistent store—each of which must typi-
cally be programmed in a different language. The key con-
tribution of Links is to allow the entire application to be
written monolithically in one (typed functional) language,
and to translate fragments into lower-level code appropriate
for their respective execution platforms: JavaScript for the



browser, SQL for the database, etc. The compiler can help
to ensure, among other things, that the tiers agree on the
types and representations of the data they pass to each other,
saving the developer the burden of writing such logic by
hand. Although Links is nominally “tierless”, it provides a
relatively server-centric programming model, with the user
interface and database acting as second-class citizens. Its
user interface support focuses on forms, which lack the rich
interactivity of modern applications.

Hop [30] is similar in spirit to Links, but it places more
emphasis on the server and user interface tiers, making an
explicit distinction between them, and supporting interest-
ing control flow both within and between the layers. Hop al-
lows both layers to be written in a (lexically) single program
expressed in essentially the same dialect of Scheme. Its so-
phisticated compiler can compile any fragment of Scheme
code into JavaScript for execution in the browser. The gen-
erated code is efficient enough to perform smooth anima-
tions or play multimedia in a modern browser. In Hop, both
tiers can call into each other, or send events to each other,
using asynchronous HTTP request and response messages.
However, event-handling uses a conventional callback-based
mechanism, which forces the reactive aspects of the program
to be written in an imperative style. This is one significant
difference between Hop and Flapjax.

Flapjax differs from Links and Hop by taking an ex-
clusively client-centric view. All of the application-specific
logic is driven from the user interface, which is written in (an
extension of) JavaScript and run in the browser. The Flapjax
server is a general-purpose, non-programmable object store
with innate notions of users, applications, and access control.
At its core, Flapjax is just a library, so no compilation is nec-
essary, although some syntactic sugar for reactive program-
ming is provided through a lightweight compiler. The client
library provides an implementation of the server’s commu-
nication protocol, which simply exchanges objects in JSON
notation over HTTP. Its support for modern social Web appli-
cations is arguably superior to that of any non-commercial
system of which we are aware, given the server’s explicit
support for users and controlled data-sharing. It also sup-
ports mash-ups that coordinate data and services from sev-
eral Web sites, a feature that Links does not seem to provide.

A key source of complexity in modern Web applications
is the need to handle asynchronous communication between
the user interface and application server. The standard Ajax
model provides a callback-based event model; this imposes
an imperative style on the developer, as well as demanding
explicit continuation management and resulting in the phe-
nomenon of stack-ripping [1]. MapJAX [13] addresses this
problem as it pertains to the manipulation of shared, per-
sistent data. It abstracts away the asynchronous HTTP com-
munication and callbacks typically needed for Ajax and in-
stead presents a familiar, high-level interface in terms of
shared memory and locking. MapJAX frees the developer

from the details of the communication protocol between the
client and server, and it implements general techniques for
making such communication more efficient and effective.
A side benefit of using MapJAX is that applications may
perform significantly better, in addition to enjoying consid-
erably simpler implementations. Unlike Flapjax, MapJAX
only addresses interactions between the client and server,
not those between the user and client, which still require
callbacks. However, it does provide a notion of concurrency
control, which we have not yet explored for Flapjax.

7. Conclusion

We have presented the Flapjax programming language. Flap-
jax is designed with the needs of Ajax developers in mind. It
provides a unified framework for programming with events,
both within the program and when communicating with
Web services. Flapjax is a dataflow-based reactive language
wherein values are automatically updated to be consistent,
relieving developers of this burden. Through examples and
discussion, we have shown that the mechanisms of Flap-
jax collaborate to make programs more declarative, and to
achieve valuable separations of concerns.

Flapjax is currently only a client-side programming
language. This is because of the relative uniformity of
Web clients: estimates are that over 90% of browsers have
JavaScript enabled, making it the Web’s other lingua franca
besides HTML. In contrast, there is a much greater range of
technologies in use on servers, making it harder to target one
platform. Nevertheless, it would be valuable to build support
for reactivity and events for server applications as well, and
to make these consistent with Flapjax clients to enable the
establishment of properties such as glitch-freedom across an
entire distributed system.
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A. Flapjax API

In this appendix, we document the portion of the Flapjax API
covered by the paper. The Flapjax API defines many more
functions, and some of the functions listed here have richer
interfaces. We encourage the curious reader to explore the
full Flapjax reference at www.flapjax-lang.org.

$B :: InputElement -> Behavior InputValue
$B(element)

Creates a behavior carrying the value of element. The ele-
ment must be a form control (e.g., a text box, a checkbox,
etc.)

$E :: Element * String -> EventStream DOMEvent
$E(element,eventName)

Creates an event stream of DOM events on element.eventName
may be any DOM event (e.g., “click”, “load”, etc.)

calmE :: Int * EventStream a -> EventStream a
calmE(t,evt)

Repeatedly “mutes” evt for t milliseconds. The result will
therefore never fire more than one event in a t millisecond
interval.

changes :: Behavior a -> EventStream a
changes(src)

Creates an event stream that fires an event carrying the value
of src whenever that value changes.

constantE :: EventStream a * b -> EventStream b
constantE(src,val)

Creates an event stream that fires a constant value, val,
whenever src fires an event.

delayE :: Int * EventStream a —> EventStream a
delayE(t,src)

Fires all events from src, but delays each of them by t
milliseconds.

DIV :: Behavior Element *
div(child,...)

-> Behavior <div>

Creates a behavior carrying a <div> element. Similar con-
structors exist for other HTML tags (e.g., P, TABLE, etc.).

filterE :: (a -> Bool) * EventStream a
-> EventStream a
filterE(pred,src)

Fires only those events of src that satisfy pred.

getForeignWebServiceObjectE ::



Same interface as getWebServiceObjectE. However, this
function can communicate with allowed remote servers via
a Flash proxy.’

getWebServiceObjectE :: EventStream request
-> EventStream response
request = { url String,
fields Object,
request "get" or "post",
response "json" or "xml" };

response = JSON or XML
getWebServiceObjectE(request)

Sends and receives messages from the server. Due to Web
browsers’ security policies, url must be on the domain
serving the Flapjax application.

insertDomB :: Behavior Element * Element
-> void
insertDomB(src,dest)

Inserts the element carried by src into the DOM, replacing
the static element placeholder dest.

insertValueB :: Behavior a * Element * String
-> void
insertValueB(val,elt,attr)

Assigns the value val to the attr attribute of elt. Updates
as val changes.

insertValueE :: EventStream a * Element * String
-> void
insertValueE(val,elt,attr)

When an event fires on val, sets the attr attribute of elt
to the value of the event.

1iftB (a * -> r) * Behavior a *
-> Behavior r

1iftB(f,src ...)

Creates a behavior whose value is the result of £ applied to
the values of src .. ..f is applied in topological order (sec-
tion 3.4) to preserve the algebraic semantics of the program.

mapE :: (a -> b) * EventStream a
-> EventStream b
mapE(f,src)

Applies f to all events of src.

mergeE :: EventStream a * EventStream a
-> EventStream a
mergeE(srcl,src2)

Fires events from both src1 and src2.

9 For more information on cross-domain security policies, see 1ivedocs.
adobe.com/flash/8/main/00001621.html.

oneE :: a -> EventStream a
oneE(val)

Creates an event stream that fires val just once. The event is
fired immediately after the current event has finished propa-
gating.

receiverE :: -> EventStream a

receiverE()

Creates an event stream that does not fire any events itself.
See sendEvent.

startsWith :: EventStream a * a -> Behavior a
startsWith(src,init)

Returns a behavior that initially holds the value init. When
a new event fires on src, the behavior holds the value of the
event.

snapshotE :: EventStream a * Behavior b
-> EventStream b
snapshotE(src,sample)

Fires an event carrying the current value of sample when-
ever an event fires on src.

sendEvent a * EventStream a -> void
sendEvent (val,dest)

Imperatively pushes val todest, where dest is created with
receiverE.

switchE :: EventStream (EventStream a)
-> EventStream a
switchE(src)

Given an event stream of event streams, fires events from the
latest inner event stream. When a new event stream arrives,
switchE stops firing events from the previous stream and
starts firing events from the new stream.

timerB Int
-> Behavior Int
timerB(interval)

Creates a behavior carrying the current time. The behavior
updates every interval milliseconds.

timerE :: Int -> EventStream Int
timerE(interval)

Creates an event stream that fires an event carrying the cur-
rent time every interval milliseconds.

valueNow :: Behavior a -> a
valueNow(src)

Returns the value of src at the point in time when valueNow
is applied.



