
The POSIX shell as a
programming language

Michael Greenberg (Pomona College)

OBT 2017 — Paris, France

i love shell

shell is everywhere
• vital for managing systems

• maintenance

• deployment

• universal tool for sysadmins

• extremely powerful

POSIX shell

• Open Group Spec/IEEE Standard 1003.1

• Intimately connected to POSIX

• Many implementations!

figure out the absolute path to the script being run a bit
non-obvious, the ${0%/*} pulls the path out of $0, cd's into the
specified directory, then uses $PWD to figure out where that
directory lives - and all this in a subshell, so we don't affect
$PWD
STEAMROOT="$(cd "${0%/*}" && echo $PWD)"

Scary!
rm -rf "$STEAMROOT/"*

https://github.com/ValveSoftware/steam-for-linux/issues/3671

curl -k https://<master hostname>:8140/packages/current/install.bash | bash

https://puppetlabs.com/blog/simplified-agent-installation-puppet-enterprise-3.2

i love
reasoning

hasn’t shell been ‘fixed’ already?

• scsh and shill?

• not POSIX shells!

• tclsh

• no formal attention, to my knowledge

• and a bit out of date at this point

ShellCheck

• Linter for shell

• Catches bug in Steam script…

• …but not a trivial refactoring

NoFAQ

• Machine learning to correct console commands

• No semantics insights

• No guarantees

• More about commands than about the shell

D’Antoni and Vaughn 2016

ABash

• Static analysis for number of arguments

• Semantic understanding

• Great start!

Mazurak and Zdancewic 2007

shell is unique
• unique evaluation model

• expansion, not evaluation, of args by default

• deploy and manage concurrency

• uniquely interactive programming model

• try before you buy

conventional evaluation

e1 eval v1 e2 eval v2 δ(⊗,v1,v2) = v3

e1 ⊗ e2 eval v3

expansion by default
e1 expand s1 e2 expand s2

unparse(δ(⊗,parse(s1),parse(s2))) = s3

e1 ⊗ e2 eval v3

e eval v unparse(v) = s
`e` expand s

c ::= v=a … a … | c r

 | c1|c2|c3|…|cn | c & | (c)

 | c1 && c2 | c1 || c2

 | ! c | c1 ; c2 | if c1 c2 c3

 | switch a … { case a…) c } …

 | while c1 c2 | for x in a … c

 | defun v c

semantics
tokenize

parse

expand

redirect

execute

wait

read

fixed behavior at
compile time}

expansion
tokenize

parse

expand

redirect

execute

wait

read

echo ~ /Users/mgree

echo ${PWD} /Users/mgree/talks/obt

basename `pwd` obt

echo $((1+1)) 2

IFS=“”  
cat `echo some file` [shows contents of ‘some file’]

echo * abstract.txt posix.key some file

echo you can “” me you can me

backquoting
tokenize

parse

expand

redirect

execute

wait

read

echo ~ /Users/mgree

echo ${PWD} /Users/mgree/talks/obt

basename `pwd` obt

echo $((1+1)) 2

IFS=“”  
cat `echo some file` [shows contents of ‘some file’]

echo * abstract.txt posix.key some file

echo you can “” me you can me

backquoting
tokenize

parse

expand

redirect

execute

wait

read

$ basename `pwd`

$ basename /Users/mgree/talks/obt

obt

…

essentials of the
semanticstokenize

parse

expand

redirect

execute

wait

read

parse

expand

execute
execute

expand

essentials of the
semantics

PATH /usr/bin:…

$ x=${y:=1} ; echo $((x+=`echo 2`))
$ x=${1} ; echo $((x+=`echo 2`))

PATH /usr/bin:…

x 1

$ echo $((x+=`echo 2`))
$ echo $((x+=2))
$ echo 3

PATH /usr/bin:…

x 3

3 env

legend: expansion evaluation

what do I want to do?

SibylFS
Ridge et al. 

SOSP’15

ptrace

semantics for shell

analyses Rehearsal
Shambaugh et al. PLDI’16

tools

Forest
Fisher et al. 

ICFP’11

program
logic

Gardner Ntzik  
OOPSLA 2015

support the programming model

• have script echo commands until script is just right

• maybe running some commands

• set -x prints commands run… 
but it still runs the commands!

• can we do better?

other tools
• compile to other languages as a form of “gradual

scripting”

• “cruft” inserter

• hardens a shell script against, e.g., signals

• uses weakest preconditions to guarantee good
exit status of all commands

types!
• commands take a regular expression over args

as input, produces certain patterns of system
calls

• summarize sets of commands/system calls/
outputs

• e.g., this script will delete all files in ~/.foo/
except for ~/.foo/cache

• analyze curl-based installers!

design
$ ls 
filename 
spaces 
filename with spaces  
$ x=“filename with spaces”  
$ rm $x 
rm: with: No such file or directory  
$ ls 
filename with spaces  
$ rm “$x” 
$ ls 
$

what else?

• theoretical ideas/angles i’m missing?

• suppose we’ve got a great model…  
what else should we do with it? 
 
thanks to:  
 Arjun Guha for early chats  
 Calvin Aylward and Austin Blatt

