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spoiler alert

early undergrads can use Coq (CS2) 

they learn real discrete mathematics 

informal and formal proof synergize 

Coq demands careful logistics
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evaluation



Consortium  
(CMC, HMC, Scripps, Pitzer) 

5000 students total 
1600 students at Pomona 

Majority minority  
no-loan policy 
12% Pell grants 
17% 1st generation  
  3% undocumented 

small classes  
more than 30 is big



septem artes liberales
trivium: grammar, rhetoric, logic 
 
quadrivium: music theory, 
arithmetic, geometry, astronomy 

students are bright 
but may lack background 

breadth over depth 

major is only 11 courses



existing courses

2nd course in the sequence 

functional programming 

tour of CS topics 

recursion 

simple data structures 

automata 

Bayesian reasoning

pre-req of 4th course (theory) 

discrete math grab bag 

induction 

number theory 

combinatorics 

probability 

graph theory

CS052 CS055

CS054 
functional programming 

proof 

discrete math



CS054 goals
prove theorems by induction 

over ℕ and other structures 

translate between English and propositions 

first-order logic with sets and inductive propositions 

apply basic graph-theoretic terminology 

program with inductively defined datatypes 

lists and binary trees



CS054 non-goals
become idiomatic Coq users 

understand the Curry-Howard Correspondence
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pedagogical idea

the hard part of learning proof: 
students don’t know 

the rules of the game 

Coq enforces the rules… 

…until students internalize them based 
on a 

true story!
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CS054
Basics, Induction, Lists, Poly, Tactics, Logic, IndProp 
Logical Foundations 
Vol. 1 of Software Foundations (SF) 

Sort  
Appel’s Verifying Functional Algorithm’s 
Vol. 3 of SF 

Combo, Sets, Graphs 
new!



Basics

Induction

Lists Poly Tactics

Logic

IndProp Sort Combo

Sets

Graphs

topics over 15 week semester

all Coq 
mostly Coq 
even mix 
all paper

legend

two-week topics

midterm

lectures mix Coq and chalkboard 

homework in Coq files 
formal and informal proofs 

worksheets not for credit



worksheets 
transferring formal to informal

4. Suppose we want to prove that 8n, Sn = n+ 1.

(a) What can we do induction on? n

(b) For each possibility above, list (a) the goal you would have to prove in the base case, (b) the

induction hypothesis you would get, and (c) the goal you would have to prove in the induction case.

Solution: Answer for n:
Base case: 1 = 0 + 1

IH: Sn0
= n0

+ 1

Inductive case: S(Sn0
) = Sn0

+ 1

(c) Which of these inductions would work to prove the theorem? n

5. Suppose we want to prove that 8nm, n+ Sm = S(n+m).

(a) What can we do induction on? n, m

(b) For each possibility above, list (a) the goal you would have to prove in the base case, (b) the

induction hypothesis you would get, and (c) the goal you would have to prove in the induction case.

Solution: Answer for n:
Base case: 0 + Sm = S(0 +m)

IH: n0
+ Sm = S(n0

+m)

Inductive case: Sn0
+ Sm = S(Sn0

+m)

Answer for m:
Base case: n+ 1 = S(n+ 0)

IH: n+ Sm0
= S(n+m0

)

Inductive case: n+ S(Sm0
) = S(n+ Sm0

)

(c) Which of these inductions would work to prove the theorem? n

6. Suppose we want to prove that 8nmp, n ⇤ (m ⇤ p) = (n ⇤m) ⇤ p.
(a) What can we do induction on? n, m, p

(b) For each possibility above, list (a) the goal you would have to prove in the base case, (b) the

induction hypothesis you would get, and (c) the goal you would have to prove in the induction case.

Solution: Answer for n:
Base case: 0 ⇤ (m ⇤ p) = (0 ⇤m) ⇤ p
IH: n0 ⇤ (m ⇤ p) = (n0 ⇤m) ⇤ p
Inductive case: Sn0 ⇤ (m ⇤ p) = (Sn0 ⇤m) ⇤ p
Answer for m:
Base case: n ⇤ (0 ⇤ p) = (n ⇤ 0) ⇤ p
IH: n ⇤ (m0 ⇤ p) = (n ⇤m0

) ⇤ p
Inductive case: n ⇤ (Sm0 ⇤ p) = (n ⇤ Sm0

) ⇤ p
Answer for p:
Base case: n ⇤ (m ⇤ 0) = (n ⇤m) ⇤ 0
IH: n ⇤ (m ⇤ p0) = (n ⇤m) ⇤ p0
Inductive case: n ⇤ (m ⇤ Sp0) = (n ⇤m) ⇤ Sp0

(c) Which of these inductions would work to prove the theorem? n, m, p

(d) Which of these inductions is easiest, i.e., requires the fewest other lemmas? n

(e) Why? Because using n most closely follows the case analysis in the definitions.
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homeworks



homeworks



help with tactics



help with proof
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what worked
nearly same exam in CS054, CS055  
nearly same mean score 

too hard and too much material 
students still had fun

CS055 CS054
TOP 20% 25% can do all of the work
MID 60% 55% can do most but not all work
COQ 15% may not ever get a paper proof correct
BOT 20% 5% may not ever get a proof correct



what didn’t work
CoqIDE was a nightmare 

crashy, non-native UI 

silently mangling Unicode characters 

bad defaults for .vo files… needed CLI 

no documentation at an appropriate level 

grading informal proofs was awkward 

new material was rough 

no time to try graphs formally



challenges
set theory desiderata: 

executable operations on any type in Set 

potentially infinite 

allow for a treatment of countability 

less arithmetic drudgery 

more interesting total programs



sets
axiomatized naïve typed set theory 
set : Type -> Type 
Universe : forall {X}, set X 

students did a bunch of equational proofs 
e.g., De Morgan’s laws 

countability just on Coq’s types 
formal proofs included: 
|nat| = |list unit| = |option nat| 
|nat| ≤ |nat -> nat| 
|x : set T| ≤ |power_set(x) : set (set T)| 
informal proofs included: |ℕ| ≤ |ℚ|, etc.



graphs
wrote up inductive graphs following Jean Duprat’s GraphBasics  
 
 Inductive graph : list X -> list (X * X) -> Type := 
   | g_empty : graph [] [] 
   | g_vertex : 
     forall (V : list X) (E : list (X * X))  
                (g : graph V E) (v : X),  
     ~In v V -> graph (v::V) E  
   | g_arc : 
     forall (V : list X) (E : list (X * X))  
                (g : graph V E) (src tgt : X),  
     In src V -> In tgt V -> ~ In (src,tgt) E ->  
     graph V ((src,tgt)::E). 

proving Euler’s Handshaking Lemma is easy: ∑ deg(v) = 2⋅|E| 

…much harder with standard maps and sums on V and E!



what’s next
use emacs, spend a day on it and the CLI 

formal/informal as separate submissions 

…but keep the questions related! 

uniform treatment of sums 

more programming



je suis un peu 
difficile…


