
Teaching Discrete Mathematics
to Early Undergraduates with

Software Foundations
Michael Greenberg and Joseph C. Osborn

Pomona College

CoqPL 2019 @ POPL
Cascais, Portugal

2019-01-19

spoiler alert

early undergrads can use Coq (CS2)

they learn real discrete mathematics

informal and formal proof synergize

Coq demands careful logistics

my plan for the talk

background

pedagogical idea

what we taught

evaluation

Consortium  
(CMC, HMC, Scripps, Pitzer)

5000 students total 
1600 students at Pomona

Majority minority  
no-loan policy 
12% Pell grants 
17% 1st generation  
 3% undocumented

small classes  
more than 30 is big

septem artes liberales
trivium: grammar, rhetoric, logic 
 
quadrivium: music theory,
arithmetic, geometry, astronomy

students are bright 
but may lack background

breadth over depth

major is only 11 courses

existing courses

2nd course in the sequence

functional programming

tour of CS topics

recursion

simple data structures

automata

Bayesian reasoning

pre-req of 4th course (theory)

discrete math grab bag

induction

number theory

combinatorics

probability

graph theory

CS052 CS055

CS054
functional programming

proof

discrete math

CS054 goals
prove theorems by induction

over ℕ and other structures

translate between English and propositions

first-order logic with sets and inductive propositions

apply basic graph-theoretic terminology

program with inductively defined datatypes

lists and binary trees

CS054 non-goals
become idiomatic Coq users

understand the Curry-Howard Correspondence

my plan for the talk

background

pedagogical idea

what we taught

evaluation

pedagogical idea

the hard part of learning proof: 
students don’t know 

the rules of the game

Coq enforces the rules…

…until students internalize them based
on a

true story!

my plan for the talk

background

pedagogical idea

what we taught

evaluation

CS054
Basics, Induction, Lists, Poly, Tactics, Logic, IndProp 
Logical Foundations 
Vol. 1 of Software Foundations (SF)

Sort  
Appel’s Verifying Functional Algorithm’s 
Vol. 3 of SF

Combo, Sets, Graphs 
new!

Basics

Induction

Lists Poly Tactics

Logic

IndProp Sort Combo

Sets

Graphs

topics over 15 week semester

all Coq
mostly Coq
even mix
all paper

legend

two-week topics

midterm

lectures mix Coq and chalkboard

homework in Coq files 
formal and informal proofs

worksheets not for credit

worksheets
transferring formal to informal

4. Suppose we want to prove that 8n, Sn = n+ 1.

(a) What can we do induction on? n

(b) For each possibility above, list (a) the goal you would have to prove in the base case, (b) the

induction hypothesis you would get, and (c) the goal you would have to prove in the induction case.

Solution: Answer for n:
Base case: 1 = 0 + 1

IH: Sn0
= n0

+ 1

Inductive case: S(Sn0
) = Sn0

+ 1

(c) Which of these inductions would work to prove the theorem? n

5. Suppose we want to prove that 8nm, n+ Sm = S(n+m).

(a) What can we do induction on? n, m

(b) For each possibility above, list (a) the goal you would have to prove in the base case, (b) the

induction hypothesis you would get, and (c) the goal you would have to prove in the induction case.

Solution: Answer for n:
Base case: 0 + Sm = S(0 +m)

IH: n0
+ Sm = S(n0

+m)

Inductive case: Sn0
+ Sm = S(Sn0

+m)

Answer for m:
Base case: n+ 1 = S(n+ 0)

IH: n+ Sm0
= S(n+m0

)

Inductive case: n+ S(Sm0
) = S(n+ Sm0

)

(c) Which of these inductions would work to prove the theorem? n

6. Suppose we want to prove that 8nmp, n ⇤ (m ⇤ p) = (n ⇤m) ⇤ p.
(a) What can we do induction on? n, m, p

(b) For each possibility above, list (a) the goal you would have to prove in the base case, (b) the

induction hypothesis you would get, and (c) the goal you would have to prove in the induction case.

Solution: Answer for n:
Base case: 0 ⇤ (m ⇤ p) = (0 ⇤m) ⇤ p
IH: n0 ⇤ (m ⇤ p) = (n0 ⇤m) ⇤ p
Inductive case: Sn0 ⇤ (m ⇤ p) = (Sn0 ⇤m) ⇤ p
Answer for m:
Base case: n ⇤ (0 ⇤ p) = (n ⇤ 0) ⇤ p
IH: n ⇤ (m0 ⇤ p) = (n ⇤m0

) ⇤ p
Inductive case: n ⇤ (Sm0 ⇤ p) = (n ⇤ Sm0

) ⇤ p
Answer for p:
Base case: n ⇤ (m ⇤ 0) = (n ⇤m) ⇤ 0
IH: n ⇤ (m ⇤ p0) = (n ⇤m) ⇤ p0
Inductive case: n ⇤ (m ⇤ Sp0) = (n ⇤m) ⇤ Sp0

(c) Which of these inductions would work to prove the theorem? n, m, p

(d) Which of these inductions is easiest, i.e., requires the fewest other lemmas? n

(e) Why? Because using n most closely follows the case analysis in the definitions.

2

homeworks

homeworks

help with tactics

help with proof

my plan for the talk

background

pedagogical idea

what we taught

evaluation

what worked
nearly same exam in CS054, CS055  
nearly same mean score

too hard and too much material 
students still had fun

CS055 CS054
TOP 20% 25% can do all of the work
MID 60% 55% can do most but not all work
COQ 15% may not ever get a paper proof correct
BOT 20% 5% may not ever get a proof correct

what didn’t work
CoqIDE was a nightmare

crashy, non-native UI

silently mangling Unicode characters

bad defaults for .vo files… needed CLI

no documentation at an appropriate level

grading informal proofs was awkward

new material was rough

no time to try graphs formally

challenges
set theory desiderata:

executable operations on any type in Set

potentially infinite

allow for a treatment of countability

less arithmetic drudgery

more interesting total programs

sets
axiomatized naïve typed set theory 
set : Type -> Type 
Universe : forall {X}, set X

students did a bunch of equational proofs 
e.g., De Morgan’s laws

countability just on Coq’s types 
formal proofs included: 
nat	=	list unit	=	option nat
nat	≤	nat -> nat		
x : set T	≤	power_set(x) : set (set T)		
informal proofs included: |ℕ| ≤ |ℚ|, etc.

graphs
wrote up inductive graphs following Jean Duprat’s GraphBasics  
 
 Inductive graph : list X -> list (X * X) -> Type := 
 | g_empty : graph [] [] 
 | g_vertex : 
 forall (V : list X) (E : list (X * X))  
 (g : graph V E) (v : X),  
 ~In v V -> graph (v::V) E  
 | g_arc : 
 forall (V : list X) (E : list (X * X))  
 (g : graph V E) (src tgt : X),  
 In src V -> In tgt V -> ~ In (src,tgt) E ->  
 graph V ((src,tgt)::E).

proving Euler’s Handshaking Lemma is easy: ∑ deg(v) = 2⋅|E|

…much harder with standard maps and sums on V and E!

what’s next
use emacs, spend a day on it and the CLI

formal/informal as separate submissions

…but keep the questions related!

uniform treatment of sums

more programming

je suis un peu
difficile…

