Teaching Discrete Mathematics
to Early Undergraduates with
Software Foundations

Michael Greenberg ani Joseph C. Oshorn
Pomona College

CogPl 2019 @ POPL
Cascais, Portugal
2019-01-19

spoiler alert

early undergrads can use Coq (CS2)
they learn real discrete mathematics
informal and formal proof synergize

Coq demands careful logistics

my plan for the talk

* background
* pedagogical idea
* what we taught

* evaluation

Pomona
@ College

* Consortium
(CMC, HMC, Scripps, Pitzer)

* 5000 students total
1600 students at Pomona

* Majority minority
no-loan policy
127% Pell grants
177 1st generation
3% undocumented

* small classes
more than 30 is big

septew artes liberales

trivium: grammar, rhetoric, logic

quadrivium: wmusic theory,
arithmetic, geometry, astronomy

* students are bright
but may lack background

* hreadth over depth

* major is only 11 courses

existing courses
€S052 CS055

* 2nd course in the sequence * pre-req of 4th course (theory)
* functional programming * discrete math grab bag
* tour of C$ topic: cso 5 4 ion
* recursion v theory
* functional programming
* simple data natorics
* proof
* auftomata bility

* discrete math
* Bayesian re theory

—— ————

%k

CS054 goals

prove theorewms by induction

* over N and other structures

translate between English and propositions

* first-order logic with seis and inductive propositions
apply basic graph-theoretic terminology

program with inductively defined datatypes

* lists and binary trees

CS054 non-qgoals

* become idiomatic Coq users

* understand the Curry-Roward Correspondence

my plan for the talk

* background
* pedagogical idea
* what we taught

* evaluation

pedagogical idea

the hard part of learning proof:
students dont know
the rules of the game

* (oq enforces the rules...

* ..until students internalize the g Y1
ona
true story!

my plan for the talk

* background
* pedagogical idea
* what we taught

* evaluation

0S054

* Basics, Induction, Lists, Poly, Tactics, Logic, IndProp
Logical Foundations
Vol. 1 of Software Foundations (SF)

* Sort
Appel’s Verifying Functional Algorithm’s
Vol. 3 of SF

* Cowmbo, Sets, Graphs
new!

legend
* |ectures mix Coq and chalkboard :

all Coq
mostly Coq

* howmework in Coq files Gk e
formal and informal proofs all paper

* worksheets not for credit
two-week topics

Induction Logic Sets

Basics Lists Poly Tactics IndProp Sort Combo Graphs

midterm
topics over 19 week semester

worksheets

transferring formal to informal

5. Suppose we want to prove that Vnm, n 4+ Sm = S(n + m).

(a) What can we do induction on? n, m

(b) For each possibility above, list (a) the goal you would have to prove in the base case, (b) the
induction hypothesis you would get, and (c¢) the goal you would have to prove in the induction case.

Solution: Answer for n:

Base case: 0+ Sm = S(0+ m)

IH: n' + Sm = S(n' +m)

Inductive case: Sn' + Sm = S(Sn’ + m)
Answer for m:

Base case: n+ 1= S(n+0)

[H: n 4+ Sm/ = S(n+m’')

Inductive case: n + S(Sm’) = S(n 4+ Sm’)

(¢) Which of these inductions would work to prove the theorem? n

homeworks

Exercise: 3 stars (permutation_length)

You may need to define and prove an auxiliary lemma in order to see how everywhere and leng
interact.

Lemma permutation length :

V A (1 1':1ist A) (a:nd),

In 1' (permutations 1) - length (everywhere a 1') = S (length 1).
Proof.

(*# FILL IN HERE *) Admitted.

Exercise: 2 stars (permutations_length)

We can finally prove the desired result: there are factorial n permutations of a list of length n.

Lemma permutations length :
V A (1:1ist A) n,
length 1 = n -
length (permutations 1) = factorial n.
Proof.
(*# FILL IN HERE *) Admitted.

homeworks

Exercise: 3 stars (lists of bools)

How many lists of booleans of length 2 are there? Write them out.

(* FILL IN HERE *)

How many lists of booleans of length 3 are there? No need to write them out.

(* FILL IN HERE *)

Write a theorem characterizing how many many lists of booleans of length n are
there, for any natural n. Your proof should be informal.

(* FILL IN HERE *%*)

intros

help with tactics

Moves things from the goal to the context. It works on quantified variables:

o FORM: intros x y z

o WHEN: goal looks like forall a b ¢, H

o EFFECT:add x, y ,and z tothe context(boundto a, b ,and c ,

respectively); goal becomes H

o INFORMAL.: "Let x, y, and z be given."

P—

destruct

Performs case analysis. Its precise use depends on the inductive type being analyzed.
Be certaintouse - / + / * to nest your case analyses. Always write an as pattern.

o FORM: destruct n as [| n']
o WHEN: n : nat isinthe context
o EFFECT: proofs splits into two cases, where n=0 and n=s n' forsome n'

o INFORMAL: "By caseson n .-If n=0 then...-If n=s n' ,then..." If you're at the
beginning of a proof, don't forget to "let n be given". It's often good to say what your

goal is in each case.

(T— T—

help with proof

CS054 — How to prove it

Text in black is the “script”—it stays the same every time; text in monospace is the corresponding Coq code. Text in red is the rest of proof—
have to figure that part out!

Proposition Pronunciation How to prove it How to use it
Vz, P(z) for all z, P(z) Let x be given. Now prove P(z) for this arbitrary z | We have y and know Vz, P(z); therefore, P(y).
we know nothing about. intros x apply .../apply ... in ...
Jdz, P(z) there exists an z | Let z = choose some object, y. Now prove P(y) for | We have 3z, P(z), so let y be given such that P(y).
such that P(z) your choice of y. exists . destruct ... as [x Hpl]
= implies g; if Suppose p. Now prove g, having assumed p. You
p=4a p tmp 7 B plz o ol 7 . & P Use #1: We have p = ¢; since proof of p, we have
then ¢ don’t have to prove p. intros H)
q. apply ... in ...
Use #2: We must show g, but we have p = ¢, so it
suffices to show p. Now go prove p! apply ...
pAgq p and g . We have p A gq, i.e., we have both p and q.
Prove p. Prove q. split destruct ... as [Hp Hql
\% or We have p V q. We go by cases.
. Sk Proof #1: To see pV g, we show p. Prove p. You PV 4 g0 oY
(p) If p holds, then prove whatever your goal was,
don’t have to prove gq. left . I
Proof #2: To see p V q, we show q. Prove g. You given p. “gnore g.
’ L g q- (¢) If g holds, then prove whatever your goal was,
don’t have to prove p. right .
given q. Ignore p.
destruct ... as [Hp | Hq]
—p not p To show —p, suppose for a contradiction that p holds. | We have —p; but proof of p—which is a contradic-
Now find a contradiction, like 0 = 1 or ¢ A =g or | tion. Now you’re done with whatever case
5 < 1. intros contra; destruct/inversion you’re in! exfalso; destruct/inversion
Derived forms
pEq p iff q; p if and | We prove each direction separately:

only if g

(=) Suppose p; proof of g.
(<=) Suppose g; proof of p.

Use #1: We have p < ¢; since proof of p, we have
q.
Use #2: We have p < ¢; since proof of g, we have
p.

Vz, P(z) = Q(z)

for all z such that
P(z) holds, Q(z)
holds

Let an z be given such that P(z). Prove Q(z), given
that P(z) holds.

Choose some y. Since we have P(y), we can conclude

Q(y).

Ve € S, P(z)

for all z in S,
P(z) holds

Let an z € S be given. Prove P(z), given that x is
in the set S.

Choose some y € S. We have P(y).

my plan for the talk

* hackground
* pedagogical idea
* what we taught

* evaluation

what worked

> nearly same exam in C$094, €S055
nearly same mean score

> t00 hard and t00 much material
students still had fun

C30595

C3054

TOP

207

25%

can do all of the work

MIP

607

537

can do most but not all work

¢0Q

15%

may not ever get a paper proof correct

BOT

207

5%

may not ever get a proof correct

what didn't work

* CoglDE was a nightwmare

* crashy, non-native Ul

* gilently mangling Unicode characters

* bad defaults for .vo files... needed CLI
* no documentation at an appropriate level
* grading informal proofs was awkward
* new material was rough

* no time to try graphs formally

challenges

* set theory desiderata:
* executable operations on any type in Set
* potentially infinite
* allow for a treatment of countability

* |ess arithmetic drudgery

* wore interesting total programs

sets

* axiomatized naive typed set theory
set : Type -> Type
Universe : forall {X}, set X

* students did a bunch of equational proofs
e.q., De Morgan’s laws

* countability just on Coq’s types

formal proofs included:
nat| = |list unit| = |option nat|
nat| < |nat -> nat|

x : set T| < |power_set(x) : set (set T) |
informal proofs included: || < |©

, efe.

graphs

* wrote up inductive graphs following Jean Duprat’s GraphBasics

Inductive graph : list X -> list (X * X) -> Type :=

| &_empty : graph [] []

| & vertex :

forall (V :list X) (B : list (X * X))
(8:8raph V E) (v: X),

“InvV ->graph (v::V) E

| &_arc:

forall (V:list X) (E : list (X * X))
(g8 :8raph V E) (src tgt : X)),

InsrcV->Intgt V->"" In (src,tgt) E ->

graph V ((src,tgt)::BE).

* proving Euler’s Handshaking Lemma is easy:)’ deg(v) = 2:|E|

...much harder with standard maps and sums on V and E!

what’s next

* yse emacs, spend a day on it and the CLI

* formal/informal as separate submissions
* ..but keep the questions related!

* Uniform treatment of sums

* more programming

je suis un peu
difficile...

