:')

Check for
Updates

Knowledge Transfer from High-Resource to Low-Resource
Programming Languages for Code LLMs

FEDERICO CASSANO, Northeastern University, USA

JOHN GOUWAR, Northeastern University, USA

FRANCESCA LUCCHETTI, Northeastern University, USA
CLAIRE SCHLESINGER, Northeastern University, USA
ANDERS FREEMAN, Wellesley College, USA

CAROLYN JANE ANDERSON, Wellesley College, USA
MOLLY Q FELDMAN, Oberlin College, USA

MICHAEL GREENBERG, Stevens Institute of Technology, USA
ABHINAV JANGDA, Microsoft Research, USA

ARJUN GUHA, Northeastern University, USA and Roblox, USA

Over the past few years, Large Language Models of Code (Code LLMs) have started to have a significant impact
on programming practice. Code LLMs are also emerging as building blocks for research in programming
languages and software engineering. However, the quality of code produced by a Code LLM varies significantly
by programming language. Code LLMs produce impressive results on high-resource programming languages
that are well represented in their training data (e.g., Java, Python, or JavaScript), but struggle with low-resource
languages that have limited training data available (e.g., OCaml, Racket, and several others).

This paper presents an effective approach for boosting the performance of Code LLMs on low-resource
languages using semi-synthetic data. Our approach, called MuLTIPL-T, generates high-quality datasets for
low-resource languages, which can then be used to fine-tune any pretrained Code LLM. MULTIPL-T translates
training data from high-resource languages into training data for low-resource languages in the following way.
1) We use a Code LLM to synthesize unit tests for commented code from a high-resource source language,
filtering out faulty tests and code with low test coverage. 2) We use a Code LLM to translate the code from the
high-resource source language to a target low-resource language. This gives us a corpus of candidate training
data in the target language, but many of these translations are wrong. 3) We use a lightweight compiler to
compile the test cases generated in (1) from the source language to the target language, which allows us to
filter our obviously wrong translations. The result is a training corpus in the target low-resource language
where all items have been validated with test cases. We apply this approach to generate tens of thousands of
new, validated training items for five low-resource languages: Julia, Lua, OCaml, R, and Racket, using Python
as the source high-resource language. Furthermore, we use an open Code LLM (StarCoderBase) with open
training data (The Stack), which allows us to decontaminate benchmarks, train models without violating
licenses, and run experiments that could not otherwise be done.

Authors’ Contact Information: Federico Cassano, Northeastern University, Boston, USA, cassano.f@northeastern.edu; John
Gouwar, Northeastern University, Boston, USA, gouwar.j@northeastern.edu; Francesca Lucchetti, Northeastern University,
Boston, USA, lucchetti.f@northeastern.edu; Claire Schlesinger, Northeastern University, Boston, USA, schlesinger.c@
northeastern.edu; Anders Freeman, Wellesley College, Wellesley, USA, afl03@wellesley.edu; Carolyn Jane Anderson,
Wellesley College, Wellesley, USA, cal01@wellesley.edu; Molly Q Feldman, Oberlin College, Oberlin, USA, mfeldman@
oberlin.edu; Michael Greenberg, Stevens Institute of Technology, Hoboken, USA, michael@greenberg.science; Abhinav
Jangda, Microsoft Research, Redmond, USA, ajangda@microsoft.com; Arjun Guha, Northeastern University, Northeastern,
USA and Roblox, San Mateo, USA, a.guha@northeastern.edu.

This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2024 Copyright held by the owner/author(s).

ACM 2475-1421/2024/10-ART295

https://doi.org/10.1145/3689735

Proc. ACM Program. Lang., Vol. 8, No. OOPSLAZ2, Article 295. Publication date: October 2024.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3689735&domain=pdf&date_stamp=2024-10-08

295:2 Cassano, Gouwar, Lucchetti, Schlesinger, Freeman, Anderson, Feldman, Greenberg, Jangda, and Guha

Using datasets generated with MULTIPL-T, we present fine-tuned versions of StarCoderBase and Code
Llama for Julia, Lua, OCaml, R, and Racket that outperform other fine-tunes of these base models on the natural
language to code task. We also present Racket fine-tunes for two very recent models, DeepSeek Coder and
StarCoder2, to show that MULTIPL-T continues to outperform other fine-tuning approaches for low-resource
languages. The MULTIPL-T approach is easy to apply to new languages, and is significantly more efficient and
effective than alternatives such as training longer.

CCS Concepts: « Software and its engineering — Automatic programming.
Additional Key Words and Phrases: Large Language Models trained on Code

ACM Reference Format:

Federico Cassano, John Gouwar, Francesca Lucchetti, Claire Schlesinger, Anders Freeman, Carolyn Jane
Anderson, Molly Q Feldman, Michael Greenberg, Abhinav Jangda, and Arjun Guha. 2024. Knowledge Transfer
from High-Resource to Low-Resource Programming Languages for Code LLMs. Proc. ACM Program. Lang. 8,
OOPSLAZ2, Article 295 (October 2024), 32 pages. https://doi.org/10.1145/3689735

1 Introduction

Large Language Models of Code (Code LLMs) are starting to have a significant impact on both
professional programmers and research in programming languages and software engineering.
GitHub Copilot is just one of several popular tools powered by Code LLMs [CodeWhisperer 2023;
Copilot 2023; TabNine 2023]. Moreover, Code LLMs are also emerging as a building block for
research [Bareif} et al. 2022; Chen et al. 2023; First et al. 2023; Joshi et al. 2023; Lemieux et al. 2023;
Murali et al. 2023; Nam et al. 2024; Phung et al. 2023; Ross et al. 2023; Schifer et al. 2024; Xia et al.
2024]. However, the quality of code produced by a Code LLM varies significantly by programming
language. Models are most impressive at producing code in high-resource programming languages
such as Python, JavaScript, and Java, but struggle in low-resource languages, such as Racket and
OCaml [Athiwaratkun et al. 2022; Cassano et al. 2023; Zheng et al. 2023]. This puts programmers
who rely on these languages at a disadvantage, since they do not receive the same benefits that
Code LLMs can deliver for high-resource languages [Murali et al. 2023; Ziegler et al. 2022].

The key issue is that the performance of Code LLMs depends on the amount of language data
available for training. For example, The Stack, which is the training set for several contemporary
Code LLMs, has 64GB of Python, but only around 1GB of OCaml and 0.5GB of Scheme/Racket [Ko-
cetkov et al. 2023].! As Figure 1 shows, the performance of StarCoderBase, an open Code LLM
trained on The Stack, generally increases as the training data for the language increases.

Our goal in this paper is to investigate methods to further train, or fine-tune, pretrained Code
LLMs to improve their performance on low-resource languages. The obvious approach is to try
to find more data, but for a low-resource language, more data is hard to find by definition. For
example, The Stack already includes all permissively licensed code for 358 programming languages
from GitHub as of 2022, and GitHub is by far the largest repository of open-source code [Borges
et al. 2016].? An alternative is to train longer (i.e, for more epochs) on existing data. However, in
this paper, we show that training longer on several low-resource languages is not only inefficient,
but can actually hurt performance (§3.1). Another alternative is to train models on synthetic data,
which is data generated by an LLM itself. These synthetic fine-tuning datasets are effective for
high-resource programming languages [Luo et al. 2024; Wang et al. 2023]. However, we show that
synthetic data does not work for low-resource languages for the intuitive reason that LLMs generate
poor quality programs in low-resource languages (§3.2).

IThis is the volume of data that remains after files are deduplication for training [Li et al. 2023].
2The Stack deliberately excludes copyleft licenses and unlicensed code.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLAZ2, Article 295. Publication date: October 2024.

Knowledge Transfer from High-Resource to Low-Resource Programming Languages for Code LLMs 295:3

0.35 4 ?Juha
|
|
|)
i Lua Typescript Javascript
4 C++ Python
0.30 1 i i Java
s 1
@ ! A PHP
[=]
o |
E 0.251 ! Rust
T !
ul i
= Ragket Go
z oF c#
50204 mOCaml
= I 1
§ LR Ruby
- hl
® i
2 0.15 i
£ i
il
Iii
i
0.10 1 |
|
|
[]
0.00 0.02 0.04 0.06 0.08 0.10

Fraction of Training Data

Fig. 1. The performance of StarCoderBase-15B on several languages supported by the MultiPL-E benchmark
for Code LLMs, plotted against their proportion of the model’s training data. Using MuLTIPL-T, this paper
significantly improves how StarCoderBase-15B performs on several low-resource languages, as shown by
the arrows. The bottom of each arrow indicates how the base model performs, and the arrowheads indicate
performance after fine-tuning with MuLTIPL-T. We also show significant improvement on other LLMs (§5).

Our approach. In this paper, we present a new and effective approach for fine-tuning Code
LLMs for low-resource programming languages that is based on generating semi-synthetic training
data. Our approach relies on several key ingredients. 1) The large volume of training data for high-
resource programming languages includes a lot of well-documented code; 2) Code LLMs are effective
and efficient unit test generators, and we can check that generated tests are valid [Schifer et al. 2024];
3) We can compile many unit tests to a low-resource language with a simple compiler [Athiwaratkun
et al. 2022; Cassano et al. 2023; Roziere et al. 2021]; 4) Code LLMs can translate code from one
language to another, and although these translations may be faulty, we can filter them with the
aforementioned tests, retry until tests pass, and engineer a prompt to increase the likelihood of
a successful translation. Putting these four ideas together, we develop a pipeline for transferring
training data across multiple programming languages that we call MuLTIPL-T.

Figure 2 gives a high-level overview of how MULTIPL-T produces high-quality training data for
a low-resource programming language. We use an LLM to translate code from a high-resource
language (D) to a target low-resource languages (). However, this translation is unreliable by
definition: LLMs are bad at producing code in low-resource programming languages. But, we can
leverage the stochasticity of LLM generation to produce several candidate translations for each
item and filter out the faulty translations with synthesized test cases (@). We cannot generate
tests directly from the low-resource code (since it is likely to be faulty). Instead, we generate and
validate tests in the high-resource language (), and then compile these tests to the low-resource
language (@). The composition of these steps gives training data in the low-resource that passes
compiled tests that also pass in the high-resource language.

The training corpora of high-resource programming languages (e.g., Python) are enormous,
so we use aggressive heuristic filters to build a corpus of “high-quality” functions (D) before
attempting any LLM translation. For these functions, we find that the LLM generates tests reliably

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 295. Publication date: October 2024.

295:4 Cassano, Gouwar, Lucchetti, Schlesinger, Freeman, Anderson, Feldman, Greenberg, Jangda, and Guha

@ Function in a LLM translated @ Function in a

high-resource PL low-resource PL

A

LLM generated;
execution-validated; Tested
coverage checked

® Test cases in the W _(@ Test cases in the
high-resource PL J Compiled (no LLM) L low-resource PL

Fig. 2. A high-level overview of how MuLTIPL-T produces high-quality training data for a low-resource
programming language. We use a Code LLM to translate a function from a high resource language (D)
to a low-resource language (). The translated code is likely to be wrong, since LLMs perform poorly on
low-resource languages. However, we filter out bad translations as follows. First, we generate unit tests the
original code (®). We execute these tests to ensure they succeed and also check for test coverage. Second,
we compile these tests to the low-resource language (@). Finally, we filter the low-resource code ((2) using
the translated tests (@), only keeping those that pass tests.

(®), but some effort is needed to get high test coverage. Translating functions () is simply LLM
prompting, but requires some lightweight type inference to be effective when the target language is
typed. Finally, to compile tests to the low-resource language (@), we build on an existing toolchain
([Cassano et al. 2023]), adding support for OCaml, new prompting formats, and support for an
LLM-translation task that is three orders of magnitude larger than what it originally supported.

Using training data generated by MULTIPL-T, we present fine-tuned Code LLMs that achieve state-
of-the-art performance on five low-resource languages: Racket, OCaml, Lua, R, and Julia. We focus
primarily on fine-tuning the StarCoder family of Code LLMs [Li et al. 2023]. There are StarCoder
models available in a variety of sizes, including a 1B parameter model that is lightweight enough
to run on CPUs, and a more capable 15B parameter model, which we use as the test generator and
language translator for MULTIPL-T. The StarCoder models also have open training data, which
allows us to compare MULTIPL-T to a baseline of training longer on existing data for low-resource
languages. We also present fine-tuned versions of the Code Llama 34B and 70B [Roziere et al.
2023] models, and Racket fine-tunes of the recently released DeepSeek Coder [Guo et al. 2024] and
StarCoder2 models [Lozhkov et al. 2024].

Contributions. To summarize, we make the following contributions:

(1) MurTIPL-T, an effective approach for generating semi-synthetic data for low-resource pro-
gramming languages using test-validated translation of high-quality code in high-resource
languages.

(2) Efficient fine-tuning datasets for Julia, Lua, OCaml, R, and Racket, comprising tens of thou-
sands of documented and tested functions generated with StarCoderBase-15B.

(3) A dataset of 133,168 Python functions extracted from the Stack, where every function has
natural language documentation and a validated set of generated tests with high coverage.
This dataset could be used to generate fine-tuning sets for other programming languages.

(4) Fine-tuned versions of StarCoderBase 1B and 15B for Julia, Lua, OCaml, R, and Racket. For
these languages, these fine-tuned models outperform prior fine-tunes of StarCoderBase on
the natural language to code task.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 295. Publication date: October 2024.

Knowledge Transfer from High-Resource to Low-Resource Programming Languages for Code LLMs 295:5

(5) Fine-tuned versions of Code Llama 34B and 70B for Julia, Lua, OCaml, R, and Racket. For these
languages, these fine-tuned models outperform prior fine-tunes of Code Llama. More signifi-
cantly, this is an uncommon result where data generated from a smaller model (StarCoderBase-
15B) improves the performance of larger and better models (Code Llama 34B and 70B).

(6) Fine-tuned versions of StarCoder2-15B and DeepSeek Coder 33B for Racket that also outper-
form other fine-tuned models. These are two very recently released models.

(7) A thorough evaluation that includes a) a comparison of MULTIPL-T to the baseline of training
further on existing data, b) an evaluation of the fine-tuning efficiency with MuLTIPL-T,
c) results on prior multi-language benchmarks [Cassano et al. 2023], d) a new multi-language
benchmark designed to exercise in-context learning, €) an evaluation of how generated code
adheres to the common Racket programming style, f) the impact of data deduplication, and
g) the impact of fine-tuning on the Python source data.

2 Background

In this section, we give a high-level overview of how Code LLMs are trained and evaluated. We use
StarCoder as the example, since it is the model that we use for most of our work.

2.1 Training and Fine-Tuning Large Language Models of Code

A large language model (LLM) is a neural network trained on hundreds of gigabytes or even terabytes
of data. Code LLMs are trained on source code (and often natural language documents too), which
allows them to generate code from comments, comments from code, more code from code, and so
on. LLM training takes significant resources: StarCoderBase was trained on approximately 800GB
of code, which took three weeks on a cluster of 512 NVIDIA A100 GPUs.

The only way to build a training set of this scale is to scrape public repositories of code. There
are a handful of public training sets that are based on GitHub [Felipe Hoffa 2016; Xu et al. 2022],
and The Stack [Kocetkov et al. 2023] is a recent example. The Stack v1.2 has 3TB of permissively
licensed source code for 358 programming languages. It was constructed in 2022, and has since
been used to train several Code LLMs [Allal et al. 2023; Nijkamp et al. 2023; Replit 2023], including
StarCoderBase. Specifically, StarCoderBase was trained on a filtered subset of The Stack consisting
of 86 programming languages.

The StarCoder model family. StarCoder is a family of models that are available at several sizes [Li
et al. 2023]. The largest and most capable model in the family is called StarCoderBase, which has
15B parameters. There are smaller versions of StarCoderBase that were trained on exactly the same
data. To make use of limited GPU resources, we use the smallest model, StarCoderBase-1B, for most
experiments in this paper. However, we also show that our results generalize to StarCoderBase-15B.
There is also a model in the StarCoder family that is just named StarCoder: it is StarCoderBase-15B
specialized to excel at Python.? This paper uses StarCoderBase-15B for translations to low-resource
languages, and StarCoder-15B for Python test generation.

The Code Llama model family. The Code Llama [Roziére et al. 2023] family of models were
recently released and perform better than the StarCoder models on common benchmarks. While
the authors state that the training data comes from publicly accessible datasets, they do not disclose
the specific datasets used, preventing us from conducting the exhaustive evaluation on Code Llama
that we do with StarCoder and its training data. Moreover, the Llama license forbids using model
outputs to train non-Llama models, which is why we use StarCoder for data generation. However,
we train and evaluate the larger Code Llama models (34B and 70B).

3StarCoder fine-tunes StarCoderBase-15B on two more epochs of Python data from The Stack.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLAZ2, Article 295. Publication date: October 2024.

295:6 Cassano, Gouwar, Lucchetti, Schlesinger, Freeman, Anderson, Feldman, Greenberg, Jangda, and Guha

def vowels_count(s):
"""Write a function vowels_count which takes a string representing a word as
input and returns the number of vowels in the string. Vowels in this case are

a', 'e', '"i', 'o', 'u'. Here, 'y' is also a vowel, but only when it is at the
end of the given word.

(a) Python prompt.

(* Write a function vowels_count which takes a string representing a word as
input and returns the number of vowels in the string. Vowels in this case are

'a', 'e', '"i', 'o', 'u'. Here, 'y' is also a vowel, but only when it is at the
end of the given word. x)
let vowels_count (s : str) : int =

(b) OCaml prompt.

Fig. 3. An example prompt from a HumanEval problem and its translation to OCaml, with our extension to
MultiPL-E. Not shown are doctests and hidden test cases, which are also translated to OCaml. This particular
problem is hard for many LLMs because it alters the strong prior on what vowels are, by saying that y is a
vowel when it is the last letter in a word.

Fine-tuning. After training, a model can be further trained, or fine-tuned, with significantly fewer
resources. For example, there are several fine-tuned versions of StarCoderBase that were trained
with a few days of GPU time on a modest amount of data (e.g., [Luo et al. 2024; Muennighoff et al.
2024]). Most fine-tuned versions of StarCoderBase are designed to make the model even better at
high-resource languages, such as Python. In contrast, this paper presents fine-tuned versions of
StarCoderBase that are significantly better at several low-resource languages.

It is common to distill data from a larger model (e.g., GPT-4), to fine-tune a smaller model [Gu-
nasekar et al. 2023; Luo et al. 2024; Wei et al. 2024]. However, we show that MULTIPL-T can do the
reverse: we use data generated from StarCoderBase-15B to fine-tune larger models, CodeLlama-34B
and 70B. This is a form of weak-to-strong supervision [Burns et al. 2024], where a smaller model is
used to generate data for training a larger model, showing the scalability of MuLTIPL-T.

2.2 Code LLM Tasks and Benchmarking Code LLMs

A Code LLM can be prompted to perform a wide variety of tasks, including code translation (e.g.,
[Pan et al. 2024]), test generation (e.g., [Schéfer et al. 2024]), code mutation (e.g., [Xia et al. 2024]),
code editing (e.g., [Cassano et al. 2024]), and much more. This article focuses on the natural language
to code task (e.g., [Heidorn 1974]) for low-resource programming languages. Making Code LLMs
better on other tasks is beyond the scope of this article.

Most Code LLM benchmarks for the natural language to code task, including those we use in
this paper, follow the format introduced by the Codex “HumanEval” benchmark [Chen et al. 2021].
Every benchmark problem has two parts: 1) a prompt for the LLM that has a function signature and
a comment, and 2) a suite of test cases that are not given to the LLM. Thus each problem is run in
two steps: 1) the LLM generates a function from the prompt, and 2) the generated function is then
tested with the hidden tests, and all tests must pass for the generated code to be considered correct.

The HumanEval benchmark has 164 problems for Python. However, it is possible to mechanically
translate most of these problems to other programming languages (Figure 3). Translating comments
and function signatures is straightforward, but some care is needed to introduce types for typed
target languages. Translating test cases turns out to be easy as well, since almost all HumanFEval

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 295. Publication date: October 2024.

Knowledge Transfer from High-Resource to Low-Resource Programming Languages for Code LLMs 295:7

test cases are of the form f(v;,) = v,y, Where v;, and v, are first-order values. This is the approach
that is taken by MultiPL-E and similar tools [Athiwaratkun et al. 2022; Cassano et al. 2023; Orlanski
et al. 2023] to build polyglot benchmarks for Code LLMs. This paper utilizes MultiPL-E, which is
the only benchmark to date that supports Racket, and we extend it to support OCaml for this paper.

Code LLMs appear to produce higher-quality code when their output is sampled [Chen et al.
2021]. Since sampling introduces non-determinism, we must evaluate their output by generating
several samples from the same prompt. The most widely used metric for Code LLM performance
is pass@k, which is the likelihood that the LLM produces a program that passes all hidden tests
at least once from k attempts. Pass@k must be estimated from n >> k samples. When k = 1 and
there are ¢ successes, pass@1 is the same as the pass rate (c/n). We use pass@1 as the metric for
all our benchmarking experiments, which is common practice. Intuitively, pass@1 measures the
ability of the Code LLM to generate a correct solution in a single attempt.

2.3 Why StarCoder?

In the rest of this paper, the majority of the work that we present uses the StarCoder family of
Code LLMs for the following reasons.

(1) At the time that we started this work, StarCoder was the best-performing, permissively
licensed, open Code LLM available.

(2) The StarCoder family includes a fairly small 1B parameter model, which is amenable to
experiments on a budget.

(3) Although there were better closed-sourced LLMs when we started, they (a) did not support
fine-tuning, (b) were significantly more expensive to use at the scale of our work, or (c) pro-
hibited using their outputs to fine-tune other LLMs [Anthropic 2023b; Google 2023; OpenAl
2023b)].

(4) StarCoder remains the only Code LLM with open training data, which we use to correlate
model performance with training set size (Figure 1), evaluate further training (§3.1), and to
check that our benchmarks are not in the training data. It would not have been possible to
do this work with any other Code LLM.

We do fine-tune several newer Code LLMs with StarCoder-generated data to show that our
approach remains useful (§5).

3 Alternatives to MuLTIPL-T

Before we present the MULTIPL-T approach, we consider two simpler alternatives.

3.1 Further Training on Natural Data

The simplest way to boost the performance of a Code LLM on a programming language is to
train it further on natural data, which is code written by human programmers rather than code
generated by other means (e.g., an LLM). This was the approach taken to create StarCoder from
StarCoderBase. The latter is the base model, and the former is fine-tuned on roughly two additional
epochs* of the Python subset of The Stack. Although this approach is effective for high-resource
languages, we now show that it does not work for several low-resource languages (Figure 4).

In Figure 4a, we fine-tune three versions of StarCoderBase-1B on three more epochs of Lua,
OCaml, and Racket each. This data is from The Stack. However, The Racket subset of The Stack is
poor quality, so we use the Scheme subset instead.” The Stack has an order of magnitude more Lua

4An epoch in machine learning refers to one complete pass through the entire training dataset.

SThe Racket subset accidentally omits the . rkt file extension and largely contains Racket documentation (in Scribble). Since
Racket is descendant from Scheme, the Scheme subset is a more reasonable fine-tuning set.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLAZ2, Article 295. Publication date: October 2024.

295:8 Cassano, Gouwar, Lucchetti, Schlesinger, Freeman, Anderson, Feldman, Greenberg, Jangda, and Guha

014 0.20
' /mﬁm\ [y S R R — _ ocam
0.12 m 3066m ST T T T e e - Stack
' 0.15 Vi ___ ocaml
0.10 s MultiPLT
— | —— OCaml a \/\,—-—_—_—_:—.T/ Racket
© Racket 0 0.10 gt N ———e Stack
£0.08 2 =T N
© Lua © Pdtad ~o __. Racket
CL0 06 o iy MultiPL-T
: 96m S Lua
65m 130m 0.05 > ! ~ Stack
0.04 3 / Lua
4m ~1002m 77 MultiPLT
0.02 668m 0.005 3 5
0 1 2 3
Epochs on a subset of The Stack Epoch Number

(a) Fine-tuning on the complete language (b) Fine-tuning on subsets that are approximately the
specific subsets of The Stack. same size as the MULTIPL-T fine-tuning datasets.

Fig. 4. We fine-tune StarCoderBase-1B on several epochs of language-specific data of The Stack and measure
performance with MultiPL-E. In Figure 4a, we train on all data from The Stack for each language. These
datasets vary in size (the labels measure their size in tokens). In Figure 4b we sample each dataset to be
approximately the same size as the MultiPL-T datasets. Both approaches that use data from The Stack barely
improve performance, and can even hurt performance. In contrast, fine-tuning on MuLTIPL-T (dashed lines)
shows significant improvement.

than OCaml and Racket. Moreover, even the Racket and OCaml data in The Stack is significantly
larger than the fine-tuning datasets we will develop with MultiPL-T. Therefore, these experiments
are not directly comparable to each other, since they train on wildly varying amounts of data.
Nevertheless, we get poor results for all: the performance of these fine-tuned models barely increases
for Racket and OCaml and even decreases for Lua.

In Figure 4b, we do another experiment with The Stack that lends itself to a direct comparison
with MuLTIPL-T. We randomly sample data from The Stack to get approximately the same volume
of data that we generate with MULTIPL-T. Thus, fine-tuning on these datasets will use similar
computing resources as fine-tuning a model with MULTIPL-T data. We use this data to fine-tune
three versions on StarCoderBase-1B for six epochs, and evaluate the models at each epoch. We
still get poor results with The Stack: Lua and OCaml performance barely increases and Racket
performance decreases. In contrast, fine-tuning with MUuLTIPL-T will show significant gains.

3.2 Self-Instruction for Low-Resource Programming Languages

An alternative to fine-tuning on natural data is to fine-tune on LLM-generated data [Luo et al. 2024;
Wang et al. 2023]. The usual approach is to hand-select a seed dataset of programs, prompt the
model with each seed to generate more programs, and iterate until a large enough dataset has been
collected. This type of approach has been used successfully to generate training data for Code LLMs
in high-resource languages [Luo et al. 2024]. However, it should be obvious that these approaches
presuppose that the LLM is good at generating reasonably correct and high-quality programs. We are
interested in languages that the model is bad at, so it should not be surprising that self-instruction
does not work.

Hllustrating self-instruction. To illustrate how self-instruction goes wrong with low-resource
languages, we use StarCoderBase-15B to generate functions in Racket, mimicking the first step of
self-instruction. We prompt the model with five hand-written examples (included in the supple-
mentary material) and have it generate five more functions (Figure 5). We find that four of the five
model-generated programs have bugs. This is a much higher error rate than what is evident from
self-instruct datasets for high-resource languages [Chaudhary 2023; Muennighoff et al. 2024].

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 295. Publication date: October 2024.

Knowledge Transfer from High-Resource to Low-Resource Programming Languages for Code LLMs 295:9

;5 sum-digits-of-number: Number -> Number
;; Sums the digits of a number
(define (sum-digits-of-number num)
(foldr +
0

(map string->number (string-split (number->string num) ""))))

(a) Splitting on the empty string produces empty strings in the list, which cannot be converted to a number.

;3 add-rev-nums: [List-of Numbers] -> Number
;; Adds the reverse of all the numbers in a list
(define (add-rev-nums 1lon)
(foldr +
0
(map (lambda (n)
(string->number (list->string
(reverse (string->1list (number->string n))))))

lon)))

(b) Working function.

;; is-palindrome-sum?: Number -> Boolean
;; Checks if a number is a palindrome sum of its digits
(define (is-palindrome-sum? num)
(is-palindrome? (sum-remainders
(map char->integer (string->1list (number->string num))) 10)))

(c) char->integer returns the ASCII code of a character, and does not parse it as a digit.

;; sum-palindromes: [List-of Numbers] -> Number
;; Sums the palindrome numbers in the list
(define (sum-palindromes 1lon)

(foldr + @ (filter is-palindrome? 1lon)))

(d) Utilizes what looks like a helper function, is-palindrome?, which is not defined.

;; is-prime?: Number -> Boolean
;5 Checks if a number is prime
(define (is-prime? num)
(cond
((= num 2) #t)
((= num 1) #f)
(else (zero? (remainder (add-odds (repeat "2" (/ num 2))) num)))))

(e) The highlighted code calls two helper functions that are not defined.

Fig. 5. Faulty Racket code generated by StarCoderBase-15B when seeded with five hand-written examples.

A self-instruction experiment. In the supplementary material we present results from an experi-
ment where we self-instruct StarCoderBase-15B on Racket and get the expected poor results.

Self-instruction and training further on existing public data do not help Code LLMs perform better
on low-resource programming languages. Thus we now turn to the MurTIPL-T approach.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLAZ2, Article 295. Publication date: October 2024.

295:10 Cassano, Gouwar, Lucchetti, Schlesinger, Freeman, Anderson, Feldman, Greenberg, Jangda, and Guha

Tested
Source

Functions
(§4.1 + 4.2)

def sort_desc(l: List[int]) -> List[int]: ° 0.0
il o
Sorts the given list . Ju'ld

MultiPL-E Translators

L in descending order
[Cassano et al. 2023]

return sorted(1)[::-
assert sort_desc([3,2,4]
assert sort_desc([3,2,1]
assert sort_desc([]) ==

(** ## Canonical Python Solution ##

1 * # return sorted(1)[::-1] UL\
* Sorts the given list
° o * in descending order
.o . 9
let sort_desc (1: int list) : int list =
Final & -
SPT assert (sort_desc [3;2;4] = [4;3;2]) ‘
MultiPL-T assert (sort_desc [3;2;1] = [3;2;1])
Dataset assert (sort_desc [] = [])
N 2
vLLM serving
L StarCoderBase 15B
C (§4.3)
(** Sorts the given list | /

(** Sorts the given list
* in descending order
*)

* in descending order
*)
let sort_desc (1: int list) : int list =
List.sort (fun x y -> compare y x) 1
assert (sort_desc [3;2;4
assert (sort_desc [3;2;1
assert (sort_desc [] = [

let sort_desc (1: int list) : int list =
List.sort (fun x y -> compare y x) 1

A

(#* Sorts
P in des
*)
let sort_desc (1: int list) : int list =
List.sort (fun x y -> compare y x) 1

given list | /
(** Sorts the given list ding order

* in descending order A

ROUGE-L

Deduplication
(§4.4)

Target Language
Evaluators
(§4.3)

*)
let sort_desc (1: int list) : int list =
List.sort (fun x y -> compare y x) 1

Fig. 6. The MuLTIPL-T pipeline for generating semi-synthetic data. Starting with a tested Python function
D, we compile the header and test cases into each target language 2. We prompt the model with the
target-language header and comment to generate 50-100 candidate translations (3 (varies by language).
We append the compiled test cases to the candidate translations (@ and evaluate with the target language
runtime. We deduplicate all programs that pass all test cases 3 to build the fine-tuning dataset (©.

4 Our Approach

We now present the MuLTIPL-T approach to generating high-quality, semi-synthetic data for
low-resource languages. Figure 6 depicts the MULTIPL-T system, which has several stages. 1) Given
a training dataset (The Stack), we filter data from a high-resource language (Python) to select
code that is amenable to automatic test generation and translation. The Stack has 60GB of Python,
and translation and test generation are expensive, so we filter quite aggressively. We only select
individual Python functions that have docstrings and pass a heuristic type-checker (§4.1). 2) Given
the filtered dataset, we use a Code LLM (StarCoder-15B) to generate test suites for each function.
We validate the generated tests for correctness and code coverage, and find that the Code LLM can
be used as a capable test generator for our purposes (§4.2). 3) We translate each Python function to
a target language L, by prompting the Code LLM to translate code. This translation may go wrong,
especially because the Code LLM performs poorly on the low-resource target language. 4) We
filter the L functions (from Step 1) to only select those that pass test cases. To do so, we compile
the Python test cases (from Step 2) to the language L, using the Python-to-L test case compiler
from MultiPL-E. The test case compiler is a traditional compiler that does not suffer from LLM
hallucinations: if it cannot compile a test case, it signals an error, and we discard the training item
if too many test cases fail to compile (§4.3). The final result is thus a dataset of novel training items
for the language L, which may be used to fine-tune any LLM. In §5, we discuss how we use this

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 295. Publication date: October 2024.

Knowledge Transfer from High-Resource to Low-Resource Programming Languages for Code LLMs 295:11

Table 1. Size of the Python source dataset after each filtering step.

Filtering Step #Functions
All functions 22,311,478
With docstrings 5,359,051
Typechecked and returns value 459,280
No TODOs and no benchmark solution 432,361
Test generation 157,767
90% line coverage from tests 133,168

data to fine-tune and evaluate several models for five different low-resource languages. The rest of
this section describes the above steps in depth.

4.1 Filtering Data from a High-Resource Language for Translation and Test Generation

The first step in MULTIPL-T is to filter code from a high-resource language to serve as the translation
source for our semi-synthetic data. We use Python because it has the highest representation in
The Stack and because MultiPL-E can compile Python function signatures and test cases to several
low-resource languages. However, our approach could easily be adapted to work with other high-
resource languages.

Filtering Python Functions Before Translation. The Stack has 22 million Python functions (Table
1). However, not all of these are amenable to translation and test-based validation with MurTIPL-T.
One could naively try to translate and generate tests for all 22M functions. However, since doing
so requires GPUs, it would be prohibitively expensive. Instead, we aggressively filter the 22M
functions down to ~400,000 functions using the following steps:

(1) We exclude Python functions that do not have a docstring or use non-ASCII characters. One
could generalize to include functions that have an associated comment. However, we still
end up with over 5M candidate functions with this simple filter.

(2) We use the Pyright [Pyright 2023] Python checker to validate that each function returns a
value, uses only the Python standard library, and is thus likely type-correct. Pyright uses
heuristics and makes no attempt at being sound. This does not impact MurLTIPL-T, since
we merely use typeability as a heuristic for code quality. This narrows the 5M functions to
approximately 460,000 functions.

(3) We exclude Python functions that have comments suggesting the implementation is incom-
plete (e.g. “TODQO”). It turns out that a fair amount of code on The Stack is incomplete; these
functions are not likely to be useful training data. To avoid data contamination, we filter
out functions whose prompt or solution appears in widely-used Code LLM benchmarks by
finding exact matches of the prompts [Austin et al. 2021; Chen et al. 2021].

The final dataset contains 432,361 Python functions. With this narrower set of functions, we
move on to the next steps that require GPUs.

4.2 Generating Python Unit Tests

The next step in MULTIPL-T is to generate unit tests for each Python function. We will then compile
these unit tests to target low-resource languages using the test case translators from MultiPL-E.
We generate Python unit tests using the following steps.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLAZ2, Article 295. Publication date: October 2024.

295:12 Cassano, Gouwar, Lucchetti, Schlesinger, Freeman, Anderson, Feldman, Greenberg, Jangda, and Guha

1.0 k] 1.0
0.9 peareee 7 0.9
0.8 v'"'“' - 0.8
GJ Q
807 807
306 806
£ £
005 305
204 204
v o
So03 £03
& &
02 02
0.1 0.1
0.0 0.0
0 5 10 15 20 25 30 35 40 45 50 55 60 65 0 10 20 30 40 50 60 70 80 90 100
Number of Tests Python Source Coverage (%)
(a) The y-axis shows the fraction of test suites (b) The y-axis shows the fraction of test suites
with fewer than x tests. with less than x% coverage.

Fig. 7. Python test suite sizes and coverage distribution among the unfiltered test generation dataset.

def count(word):
"""Count the number of X's in a word.
count = @
for letter in word:
if letter == "Y":
count += 1
return count

assert count("XXXXXX") == 6 # First completion
assert count("YYY") == 3 # Second completion

Fig. 8. Anexample prompt to generate a unit test where the code and comment are inconsistent: the comment
counts X’s, but the code counts Y’s. Using a Code LLM to generate tests helps expose the inconsistency: we
get some tests that are based on the comment and others based on the code. We show two completions we
got from StarCoderBase-15B in two successive queries. The “assert count(” is part of the prompt, but we
show it with the completion for clarity.

(1) We prompt the Code LLM to generate assertions given the Python function, taking care to
generate several independent test suites to get high coverage, and executing the tests to
ensure that they pass.

(2) For each function, we measure the coverage of the aggregated test suites, discarding functions
with less than 90% line coverage.

(3) We use the tests to infer basic types for the Python function, which is necessary to compute
the tests to certain target languages.

Test generation. Instead of using a traditional test generator that synthesizes tests from code
(e.g., [Lukasczyk et al. 2020]), we use a Code LLM to generate test cases by prompting the model to
produce an assertion. The Code LLM conditions on the source code text and thus serves as a weak
detector for inconsistencies between code and comments. For example, Figure 8 shows a function
that would be a bad training item: the code counts Y’s, but has a comment that says it counts X’s.
When we generate several test cases independently, we end up with tests for both X and Y, which
lowers the ratio of passing tests. Conditioning on the text makes it less likely that inconsistent tests
will be generated, decreasing the likelihood that functions will be filtered out of the training set
due to low coverage (as described below).

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 295. Publication date: October 2024.

Knowledge Transfer from High-Resource to Low-Resource Programming Languages for Code LLMs 295:13

def rep_or_hello(x):
"""Repeat string twice, or
produce Hello if no string given

if x is None: (*x Repeat string twice, or produce
return "Hello" Hello if no string given. x)
else: let rep_or_hello (x : string option)
return x + Xx : string =
assert rep_or_hello(None) == "Hello" assert rep_or_hello None == "Hello";;
assert rep_or_hello("y") = "yy" assert rep_or_hello (Some "y") = "yy"
(a) Python function and generated tests. (b) OCaml prompt and compiled tests.

Fig. 9. An example that demonstrates the need for Python type inference when translating to OCaml. Figure
9a shows a Python function with generated test cases. We then compile both the Python function signature
and the test cases to OCaml (Figure 9b). However, to know that the Python string "y" must compile to Some
"y" in OCaml, we need to infer Python types.

We prompt StarCoder-15B to generate five independent test suites for each function with high
temperature® (0.8) to get a diverse set of candidate tests. We parse each generated test suite and
extract all test cases that are suitable for translation using MultiPL-E. We take the set of matching
test cases and run each test in isolation in a container to verify that it passes, discarding any that
fail. If no correct tests are generated, we discard the function. The result is a set of nearly 160,000
Python functions with at least one passing test case. Figure 7a shows the distribution of test suite
sizes. The median number of test cases per function is 7, and the mean is 12.1. Note that we do not
filter any tests after validated, so a function may be more tests that strictly necessary.

Filtering on test coverage. Given the dataset of Python functions with docstrings and test suites,
our next step is to filter out functions with low test coverage. We use line coverage as the coverage
metric and exclude all functions with less than 90% line coverage. The result is a dataset of 133,668
functions with 90% line coverage from tests.

Since we start with nearly 160,000 functions, this implies that most of the generated test suites
that work have high line coverage. In fact, most functions have 100% line coverage (Figure 7b).
This stringent criterion ensures that the functions in our final set are not just correct but also
comprehensively tested, reinforcing the reliability of our dataset. In the filtered Python dataset, the
average function has 10.3 lines of code (SD=10.7) and on average 3.6 branches (SD=4.1).

Type inference. The steps described above are sufficient to generate data for an untyped low-
resource language (e.g., Racket or Lua). However, for a typed target (e.g., OCaml or Julia), we also
need to infer types for two reasons.” Consider the case where we target OCaml. First, we rely on the
LLM to generate an OCaml function body, given only a comment and the function header (let f
x =). Without type annotations, the only signal about the desired type of f are the identifier names
and the comment. With type annotations, the LLM is far more likely to produce a function with
the expected type. Second, we need to infer Python types to compile test cases, which we illustrate
in Figure 9. In this example, we have a Python function that consumes an optional string. We have
two test cases, one that applies the function to None and the other that applies the function to a
string. When we compile these tests to OCaml, we have to transform the Python argument type

®Temperature is a parameter that controls the randomness of the next-token predictions. A higher temperature results in

more varied (less predictable) output, while a lower temperature produces more conservative (more predictable) results.
"Julia can be used with or without types, and our dataset has both typed and untyped examples.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLAZ2, Article 295. Publication date: October 2024.

295:14 Cassano, Gouwar, Lucchetti, Schlesinger, Freeman, Anderson, Feldman, Greenberg, Jangda, and Guha

Union[str,None] to the OCaml type string option. We can only do this type transformation
after we have inferred the Python type.

Our approach to type inference is simple: we deduce types based on test cases, ignoring the
function body. We extract the instance type of each argument and expected return value in each
test, computing the union type between the types at the same position among tests. For example,
if the test cases apply foo(1) and foo(None), we infer Union[int, None] as the type of foo’s
argument. Moreover, we simplify Union[T, None] to the more canonical Optional[T]. For exam-
ple,Union[int, int, None] would be then simplified to Optional[int]. This approach to type
inference can only fail if the code is non-deterministic, which does not occur in our dataset.

Following the steps above produces two datasets of Python functions—one with and one without
type annotations—where every function has a docstring and a suite of unit tests that achieve high
coverage. These datasets can be used to generate training data for any low-resource language.

4.3 Translation from a High-Resource to a Low-Resource Language

Given a dataset of commented Python functions with high coverage unit test suites, our next goal is
to translate the dataset from Python to a target language L and use tests to validate the translation.

Translation with a Code LLM and MultiPL-E. We use a modified version of MultiPL-E [Cassano
et al. 2023] to translate each Python function into an equivalent function in the target low-resource
language. We construct a MultiPL-E prompt with the following three parts:

(1) Docstring: We turn the Python docstring into a comment in the target language. The MultiPL-
E toolchain translates between different comment formats and also alters common type
names in natural language using simple rules. For example, when translating from Python to
OCaml, we turn “dictionary” into “association list”.

(2) Function signature: We turn the Python function signature into a function signature in the
target language. This step may involve translating types from Python into the target language
if they are required.

(3) Original Python code: Finally, we add a comment (in the target language) that contains the
original Python code. We find that this additional information increases the chance that the
model generates a correct translation (§5.4.2).

Figure 6 highlights an example prompt and test suite for translating a descending sort function
written in Python to OCaml in the programs labeled 1 and 2. MultiPL-E translates comments written
in Python to OCaml and translates each test case and the function signature from Python to OCaml.
The original Python code is added as part of the comment.

Given this prompt, we use StarCoderBase-15B to generate translations of each problem in our
Python dataset. For all of our languages, we generate 50 translations® with high temperature (0.8),
to encourage the Code LLM to produce a more diverse set of candidate solutions [Chen et al. 2021].

Checking translations with compiled tests. A Code LLM is quite likel