
Making Formulog Fast: An Argument for Unconventional
Datalog Evaluation

AARON BEMBENEK, University of Melbourne, Australia

MICHAEL GREENBERG, Stevens Institute of Technology, USA
STEPHEN CHONG, Harvard University, USA

With its combination of Datalog, SMT solving, and functional programming, the language Formulog provides an

appealing mix of features for implementing SMT-based static analyses (e.g., refinement type checking, symbolic

execution) in a natural, declarative way. At the same time, the performance of its custom Datalog solver can

be an impediment to using Formulog beyond prototyping—a common problem for Datalog variants that aspire

to solve large problem instances. In this work we speed up Formulog evaluation, with some surprising results:

while 2.2× speedups can be obtained by using the conventional techniques for high-performance Datalog

(e.g., compilation, specialized data structures), the big wins come by abandoning the central assumption in

modern performant Datalog engines, semi-naive Datalog evaluation. In the place of semi-naive evaluation,

we develop eager evaluation, a concurrent Datalog evaluation algorithm that explores the logical inference

space via a depth-first traversal order. In practice, eager evaluation leads to an advantageous distribution of

Formulog’s SMT workload to external SMT solvers and improved SMT solving times: our eager evaluation

extensions to the Formulog interpreter and Soufflé’s code generator achieve mean 5.2× and 7.6× speedups,
respectively, over the optimized code generated by off-the-shelf Soufflé on SMT-heavy Formulog benchmarks.

All in all, using compilation and eager evaluation (as appropriate), Formulog implementations of refinement

type checking, bottom-up pointer analysis, and symbolic execution achieve speedups on 20 out of 23 bench-

marks over previously published, hand-tuned analyses written in F
♯
, Java, and C++, providing strong evidence

that Formulog can be the basis of a realistic platform for SMT-based static analysis. Moreover, our experience

adds nuance to the conventional wisdom that traditional semi-naive evaluation is the one-size-fits-all best

Datalog evaluation algorithm for static analysis workloads.

CCS Concepts: • Software and its engineering→ Constraint and logic languages; Automated static
analysis; • Computing methodologies→ Shared memory algorithms.

Additional Key Words and Phrases: Datalog, SMT solving, Formulog, compilation, parallel evaluation

ACM Reference Format:
Aaron Bembenek, Michael Greenberg, and Stephen Chong. 2024. Making Formulog Fast: An Argument for

Unconventional Datalog Evaluation. Proc. ACM Program. Lang. 8, OOPSLA2, Article 314 (October 2024),

30 pages. https://doi.org/10.1145/3689754

1 Introduction
Through combining Datalog, SMT solving, and functional programming, Formulog [Bembenek

et al. 2020b] aims to be a domain-specific language for declaratively implementing SMT-based

static analyses such as refinement type checking and symbolic execution. Formulog-based analyses

achieve speedups over (non-Datalog) reference implementations on several case studies thanks to

Authors’ Contact Information: Aaron Bembenek, University of Melbourne, Parkville, Australia, aaron.bembenek@unimelb.

edu.au; Michael Greenberg, Stevens Institute of Technology, Hoboken, USA, michael@greenberg.science; Stephen Chong,

Harvard University, Cambridge, USA, chong@seas.harvard.edu.

© 2024 Copyright held by the owner/author(s).

ACM 2475-1421/2024/10-ART314

https://doi.org/10.1145/3689754

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 314. Publication date: October 2024.

This work is licensed under a Creative Commons Attribution 4.0 International License.

HTTPS://ORCID.ORG/0000-0002-3677-701X
HTTPS://ORCID.ORG/0000-0003-0014-7670
HTTPS://ORCID.ORG/0000-0002-6734-5383
https://doi.org/10.1145/3689754
https://orcid.org/0000-0002-3677-701X
https://orcid.org/0000-0003-0014-7670
https://orcid.org/0000-0002-6734-5383
https://doi.org/10.1145/3689754
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3689754&domain=pdf&date_stamp=2024-10-08

314:2 Aaron Bembenek, Michael Greenberg, and Stephen Chong

high-level optimizations like automatic parallelization and goal-directed evaluation; nonetheless,

the prototype Formulog interpreter is not a heavily optimized system, and on pure Datalog programs

it can be ∼7× slower than the industrial-strength Datalog solver Soufflé [Jordan et al. 2016; Scholz

et al. 2016]. This performance gap is hardly surprising, as building a performant Datalog system is

a challenging endeavor—involving multicore programming, specialized data structures, and subtle

engineering—and Soufflé has benefited from multiple person-years of engineering investment, as

well as industry support.

The engineering gap between Formulog and an optimized Datalog system like Soufflé has limited

Formulog’s use in practice. For example, Smaragdakis et al. [2021] conclude that Formulog’s custom

Datalog engine will not scale to the problems targeted by their novel “symvalic” analysis; this is

despite the fact that Formulog has the right language features, and “an evolved implementation

[of Formulog] that will seamlessly combine Datalog rules and symbolic reasoning with high

performance will be an ideal platform for symvalic analysis in the future.” Formulog may have

been a success from the perspective of language design, but its potential is only partially realized if

the performance of its prototype implementation prevents interested clients from using it.

Moreover, performance concerns do not apply solely to Formulog: indeed, any novel Datalog

variant that aspires to solve industrial-size problem instances faces the challenge of closing the

sizable gap between research artifact and high-performance system.

Fortunately, over the past decade, a recipe has emerged for fast and scalable Datalog evalua-

tion, based on techniques pioneered by Soufflé: compile the Datalog program to imperative code

that specializes the semi-naive Datalog evaluation algorithm [Bancilhon 1986] to that source pro-

gram [Jordan et al. 2016; Scholz et al. 2016], and link in optimized data structures [Jordan et al.

2019a,b, 2022; Subotić et al. 2018]. This is the general approach taken by recent high-performance

Datalog engines (beyond Soufflé) that target static analysis applications. For example, Ascent [Sa-

hebolamri et al. 2022] uses macros to compile embedded Datalog code to Rust code implementing

semi-naive evaluation for that program, and then Byods [Sahebolamri et al. 2023] adds the ability

for users to link in custom data structures ideal for the particular workload; Flan [Abeysinghe et al.

2024] uses a metaprogramming framework to specialize both a semi-naive Datalog interpreter and

the data structures used by the interpreter to the Datalog program being evaluated.

Pacak and Erdweg [2022] sensibly propose “frontend compilation” as an approach to making

novel Datalog-inspired languages performant: compile them to existing high-performance Datalog

engines that already implement the traditional recipe for fast and scalable Datalog evaluation. They

contrast frontend compilation with two existing classes of approaches to making Datalog systems

more expressive or usable: “frontend-first” approaches, which start by adding language features to

Datalog and then build a custom backend to support them (here they explicitly use Formulog as an

example), and “backend-first” approaches, which start with existing Datalog infrastructure and add

new features on top of it. They argue that frontend compilation achieves the best of both worlds,

by allowing expressive frontend design, while reusing existing Datalog infrastructure.

Our first attempt to speed up Formulog evaluation follows the frontend compilation approach of

Pacak and Erdweg [2022]. We develop a compiler from the Datalog fragment of Formulog to Soufflé,

which in turn generates C++ code; this code is linked with the C++ code generated directly by our

compiler for the non-Datalog features of Formulog (the functional fragment and SMT runtime). The

generated code is arithmetic mean 2.2× faster than the baseline Formulog interpreter on Formulog

benchmarks (min /median /max: 1.0×/1.7×/4.3×); the approach works particularly well for

programs (like a bottom-up Java pointer analysis [Feng et al. 2015]) where most computational

work happens in the Datalog fragment (arith mean /min /median /max: 3.2× /1.3× /3.4× /4.3×).

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 314. Publication date: October 2024.

Making Formulog Fast: An Argument for Unconventional Datalog Evaluation 314:3

Given the engineering effort put into Soufflé, this speedup is not surprising; what is surprising is

that one can do better, with little engineering effort. With the addition of just 200 lines of code,

the prototype Formulog interpreter beats the optimized C++ code generated by Soufflé with an

arithmetic mean 5.2× speedup on non-trivial SMT-heavy benchmarks (min /median /max: 0.41×/
1.2×/31×), such as sophisticated refinement type checking [Bierman et al. 2012] and KLEE-style

symbolic execution [Cadar et al. 2008], where there are up to hundreds of thousands of SMT

calls and tens of millions of derived tuples. The code generated by Soufflé has many potential

advantages over the Formulog interpreter (which is written in Java and uses relatively naive data

structures); the interpreter’s trick is to abandon one of the key assumptions underlying modern

high-performance Datalog engines, semi-naive evaluation.

Semi-naive evaluation [Bancilhon 1986] has been the standard Datalog evaluation algorithm

for decades, and is the backbone of virtually all modern Datalog engines (especially those that

target static analysis applications) [Ketsman and Koutris 2022]. Semi-naive evaluation cuts down

on the number of redundant inferences made while evaluating Datalog rules, but it has a crucial

limitation when it comes to Formulog evaluation: it enforces a breadth-first search (BFS) over the

logical inference space, deriving inferences of proof height one, followed by inferences of proof

height two, three, etc. In the context of Formulog, the order of logical inferences determines how

the SMT queries that arise in the course of Datalog rule evaluation are distributed amongst external

SMT solvers; thus, improved Formulog performance can be achieved by making inferences in an

order that leads to faster external SMT solving (whether thanks to improved opportunities for

incremental SMT solving [Bembenek et al. 2020a; Eén and Sörensson 2003] or just a more favorable

distribution of the SMT workload). Here, the BFS of semi-naive evaluation can be suboptimal.

In place of traditional semi-naive evaluation, we develop eager evaluation, a Datalog evaluation

algorithm that uses work-stealing-based parallelism [Arora et al. 1998; Blumofe and Leiserson 1999;

Mohr et al. 1990] to perform a quasi-depth-first search (DFS) of the logical inference space.
1
Instead

of batching work into explicit rounds of evaluation (as in semi-naive evaluation), eager evaluation

eagerly pursues the consequences of the most recent derivations. While this lack of batching means

that eager evaluation can sometimes make more redundant derivations than semi-naive evaluation,

in practice it is a good evaluation algorithm for Formulog: eager evaluation leads to advantageous

distributions of the SMT workload across external SMT solvers and thus less time spent in SMT

solving, a key determiner of overall performance for SMT-heavy Formulog programs.

We extend Soufflé with proof-of-concept support for generating C++ code that performs eager

evaluation. On SMT-heavy benchmarks, the generated code achieves an arithmetic mean 1.8×
speedup (min/median/max: 0.93×/1.3×/4.1×) over the Formulog interpreter running in eager

evaluation mode. This represents an arithmetic mean 8.8× speedup over the baseline Formulog

interpreter (min/median/max: 0.73×/4.8×/38×). As our modifications to the Soufflé codebase

amount to merely 500 additional lines of code, our experience demonstrates the feasibility of using

existing infrastructure to build Datalog engines that perform eager evaluation. This is a key strength

of the algorithm, as a novel Datalog evaluation technique is unlikely to be used in practice if it is

incompatible with the substantial research and sophisticated, labor-intensive engineering that has

gone into making existing Datalog systems like Soufflé performant.

Overall, our compiler from Formulog to Soufflé—set to use our eager evaluation extension for

SMT-heavy benchmarks—provides an arithmetic mean speedup of 6.4× over the baseline Formulog

interpreter (min/median/max: 0.74×/3.4×/38×; see summary in Table 1), and beats all interpreter

modes on 22 out of 23 benchmarks. This translates to competitive performance relative to previously

1
The original Formulog paper [Bembenek et al. 2020b] uses a preliminary version of eager evaluation for one of the case

studies; however, it does not describe it nor evaluate it with respect to semi-naive evaluation. This paper fills those gaps.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 314. Publication date: October 2024.

314:4 Aaron Bembenek, Michael Greenberg, and Stephen Chong

Table 1. Compilation and eager evaluation lead to substantial arithmetic mean speedups over the baseline
Formulog interpreter. The headings “+eager (interpret)” and “+eager (compile)” denote using interpreted
and compiled eager evaluation modes, respectively, for SMT-heavy benchmarks, and the base compiler
(to off-the-shelf Soufflé) for the other benchmarks. Eager evaluation is key to getting top performance on
SMT-heavy benchmarks, where interpreted eager evaluation actually beats compiled semi-naive code.

Benchmarks Base compiler +eager (interpret) +eager (compile)

SMT-heavy (13) 1.5× 5.7× 8.8×
All (23) 2.2× 4.6× 6.4×

published, hand-tuned analyses written in F
♯
, Java, and C++: on 20 out of 23 benchmarks, some

Formulog mode is the fastest; on synthetic symbolic execution benchmarks, compiled Formulog’s

eager evaluation mode achieves an arithmetic mean 100× speedup (min/median/max: 7.0×/12×
/870×) over the symbolic execution tool KLEE [Cadar et al. 2008]. These results provide strong

evidence that Formulog can be the basis of a realistic platform for SMT-based static analysis.

1.1 Impact Beyond Formulog
While we focus on Formulog, our work has broader impact along three main dimensions.

We push the frontiers of Datalog for static analysis. Our work helps redefine the boundary of

what is known to be feasible for Datalog-based static analysis, an active area of PL research that

strives to make it possible to write analyses that are declarative (i.e., at the level of mathematical

specifications) and can be efficiently evaluated. The original Formulog paper [Bembenek et al.

2020b] primarily answers an expressivity-focused research question: “Can SMT-based analyses

like symbolic execution and refinement type checking be naturally expressed in a Datalog-like

language?” Our paper answers equally important performance-focused research questions: “Can

SMT-based analyses like symbolic execution and refinement type checking be efficiently evaluated

in a Datalog-like language? Are existing ways of speeding up Datalog evaluation sufficient, or are

new approaches necessary?” In answering these questions—and by proposing a targeted evaluation

algorithm that can be easily integrated with existing high-performance Datalog infrastructure—we

give good evidence for the practicality of developing SAT/SMT-based analyses in Datalog, a research

direction that is of interest to other (non-Formulog) declarative static analysis projects [Abeysinghe

et al. 2024; Aiken et al. 2007; Smaragdakis et al. 2021].

We highlight how Datalog variants can be sensitive to logical inference order. Other Datalog
variants that interact with stateful external systems might benefit from evaluation modes, like

eager evaluation, that explore the space of logical inferences in an order that is advantageous from

the perspective of those external systems. For example, a Datalog system that interacts with an

external database that does not fit in memory would want to avoid inducing irregular database

access patterns that lead to disk thrashing; a Datalog system that interacts with AI chatbots (cf.

Vieira [Li et al. 2024]) might get better quality responses if the sequence of prompts sent to a

chatbot forms a coherent line of conversation.

We question the conventional wisdom on speeding up Datalog. Our experiences add some nuance to

the conventional narrative of how to make non-distributed Datalog variants fast. To this point, the

suggestion has been that the combination of compilation, specialized data structures, and semi-naive

evaluation is sufficient (perhaps with some additional attention to join orders and join algorithms).

Our work demonstrates that this mindset runs the risk of missing out on performance improvements

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 314. Publication date: October 2024.

Making Formulog Fast: An Argument for Unconventional Datalog Evaluation 314:5

coming from the choice of evaluation algorithm itself, and that the “frontend compilation” approach

of Pacak and Erdweg [2022]—while a reasonable starting point—can ultimately provide only limited

performance gains if existing Datalog systems do not anticipate the potentially idiosyncratic

workloads of the Datalog variant being compiled. Over time, Datalog has moved wildly beyond

its origins as a database query language, with applications in such diverse domains as static

analysis [Bravenboer and Smaragdakis 2009; Flores-Montoya and Schulte 2020; Grech et al. 2019,

2018; Smaragdakis et al. 2021; Szabó et al. 2018, 2021; Tsankov et al. 2018; Whaley et al. 2005; Whaley

and Lam 2004], networking [Loo et al. 2006; Ryzhyk and Budiu 2019], distributed systems [Alvaro

et al. 2010a,b], access control [Dougherty et al. 2006; Li and Mitchell 2003], big data analytics [Seo

et al. 2013; Shkapsky et al. 2016], and neurosymbolic AI [Huang et al. 2021; Li et al. 2024, 2023]. As

the applications of Datalog continue to evolve—whether to entirely new domains, or simply to new

forms in existing domains (e.g., SMT-based static analyses)—we should keep in mind the possibility

of developing novel Datalog evaluation algorithms to better fit new workloads. A benefit of a

declarative language like Datalog is that it is amenable to many different evaluation techniques; our

work demonstrates one way that Datalog system designers can take advantage of this flexibility.

1.2 Contributions
At a high level, our paper explores how to efficiently execute SMT-based program analyses like

symbolic execution and refinement type checking in a Datalog-like language. The Formulog versions

of these analyses differ from the types of analyses traditionally written in Datalog, in form (due

to the extensive use of functional code), in the analysis logic they implement (thanks to SMT

solving), and in their workloads (as SMT solving can be the most computationally intensive part).

By developing practical techniques to speed up these Datalog-based analyses, and showing that

the Formulog versions can be competitive with—and sometimes much faster than—non-Datalog

versions implemented in conventional languages, our work contributes to the larger research project

of declarative, Datalog-based static analysis. More concretely, we make the following contributions:

• We design and evaluate a compiler from Formulog to off-the-shelf Soufflé (Section 3). On the

Formulog benchmark suite, the code produced by the compiler achieves an arithmetic mean

2.2× speedup over the Formulog interpreter’s semi-naive evaluation mode. Through this

compiler from Formulog to Soufflé, we evaluate how well the recent “frontend compilation”

proposal of Pacak and Erdweg [2022] works for Formulog.

• We observe that—unlike for traditional Datalog workloads—the order in which logical infer-

ences are made affects Formulog performance by determining the distribution of the SMT

workload across threads. This inspires a novel “eager” strategy for parallel Datalog evalu-

ation that eschews the batching of semi-naive evaluation in favor of eagerly pursuing the

consequences of logical derivations with the help of a work-stealing thread pool (Section 4).

• We extend the Formulog interpreter and Soufflé’s code generator to support eager evaluation,

leading to arithmetic mean speedups of 5.2× and 7.6×, respectively, over using off-the-shelf

Soufflé on SMT-heavy Formulog benchmarks; doing so demonstrates that eager evaluation is

a practical and effective approach consistent with existing Datalog infrastructure (Section 5).

• We reassess Formulog’s performance in a wider context—showing that Formulog-based analy-

ses can be competitive with previously published, hand-tuned, non-Datalog implementations

of a range of SMT-based analyses—and suggest future improvements (Section 6).

2 Background
We overview the basics of Datalog (Section 2.1), Soufflé (Section 2.2), and Formulog (Section 2.3).

Throughout, we boldface a metavariable to indicate zero or more repetitions.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 314. Publication date: October 2024.

314:6 Aaron Bembenek, Michael Greenberg, and Stephen Chong

Constructs
Programs prog

dl
::= Hdl

Horn clauses 𝐻dl
::= 𝑝 (t) :− Adl

Atoms 𝐴dl
::= 𝑝 (t) | !𝑝 (t) | 𝑡 = 𝑡 | 𝑡 != 𝑡

Terms 𝑡 ::= 𝑋 | 𝑛 | @𝑓 cpp (t)

Namespaces
Variables 𝑋 ∈ Var

Integers 𝑛 ∈ Z
Predicates 𝑝 ∈ PredVar

C++ functions 𝑓 cpp ∈ CppVar

Fig. 1. A grammar distilling the standard features of Datalog; we model Soufflé by adding functor calls
@𝑓 cpp (t), which are FFI calls invoking external C++ functions.

2.1 Datalog
A Datalog [Ceri et al. 1989; Gallaire and Minker 1978; Green et al. 2013] program is a set of Horn

clauses (Figure 1), where each Horn clause is in the form 𝑝 (t) :− Adl
. A Horn clause can be

interpreted as a logical implication: the head predicate 𝑝 (t) holds if all the body atoms Adl
are

true. At a high level, Datalog evaluation amounts to making all logical inferences justified by the

implications in the program, where each Horn clause is an inference rule in which the body atoms

are the premises and the head predicate is the conclusion:

𝑝 (𝑡1, . . . , 𝑡𝑚) :− 𝐴dl

1
, . . . , 𝐴dl

𝑛 ⇐⇒
𝐴dl

1
. . . 𝐴dl

𝑛

𝑝 (𝑡1, . . . , 𝑡𝑚)

An atom 𝐴dl
has one of four forms. In addition to the standard positive predicates 𝑝 (t), Datalog

typically supports negative predicates !𝑝 (t). A negative predicate holds when it cannot be derived by

the program (negation as failure [Clark 1977]). Unification predicates 𝑡 = 𝑡 unify their two arguments,

failing if the unification is impossible. Inequality predicates 𝑡 != 𝑡 hold when their arguments are

not equal. All these predicates are defined over terms, 𝑡 , which are either variables 𝑋 or constants;

here we assume, without loss of generality, that each constant is an integer 𝑛. (We discuss Soufflé’s

foreign function calls, @𝑓 cpp (t), below.)
The predicate symbols in a Datalog program can be split into strata, so that the predicate symbol

of the head of a rule is not in a lower stratum than any predicate symbol occurring in its body.

By splitting a Datalog program into parts and putting a dependency order on them, stratification

enables an intuitive and easily computable meaning for negated predicates in programs that meet

the requirements of stratified negation [Apt et al. 1988; Przymusinski 1988; Van Gelder 1989]. The

standard for Datalog, stratified negation sidesteps semantic and computational complications that

arise when negation occurs within recursion (cf. the stable model semantics [Gelfond and Lifschitz

1988]), by requiring a predicate symbol 𝑝 to be in a strictly higher stratum than predicate symbol 𝑞

if there is a rule with predicate 𝑝 (t) in the head and negated predicate !𝑞(t′) in the body.

Datalog evaluation typically proceeds as a sequence of least-fixpoint computations, computing

all the tuples in the predicates at the lowest stratum and working upwards, where each stratum

is solved using some form of bottom-up evaluation. For example, consider a stratum computing

graph transitive closure, in which there is a non-recursive relation edge storing the edges of the
graph (the input to the stratum) and a recursive relation reach defining their transitive closure:

reach(X, Y) :- edge(X, Y). // rule trans_edge

reach(X, Z) :- edge(X, Y), reach(Y, Z). // rule trans_step

Naive evaluation repeatedly runs these inference rules until no new reach tuples are derived (i.e.,

a fixpoint is reached). Running all the rules involves significant redundant computation—each

iteration re-derives all tuples derived by previous iterations. The de facto standard technique of

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 314. Publication date: October 2024.

Making Formulog Fast: An Argument for Unconventional Datalog Evaluation 314:7

semi-naive evaluation [Bancilhon 1986] avoids some of this redundancy by executing Horn clauses

rewritten to use auxiliary relations indexed by the iteration of the fixpoint computation:

Δ(reach)[1](X, Y) :- edge(X, Y).

Δ(reach)[𝑖](X, Z) :- edge(X, Y), 𝛿(reach)[𝑖−1](Y, Z).

A predicate symbol 𝑝 [𝑖] signifies relation 𝑝 at the beginning of step 𝑖 , and 𝑝 [𝑖+1] = Δ(𝑝)𝑖 ∪ 𝑝 [𝑖] and
𝛿 (𝑝) [𝑖] = Δ(𝑝) [𝑖] − 𝑝 [𝑖] . Intuitively, the relation 𝛿 (𝑝) [𝑖] is the set of new tuples derived in iteration

𝑖 , and the relation Δ(𝑝) [𝑖] is an overapproximation of that set. We have reached a fixpoint for a

stratum once all of its 𝛿-relations are empty, i.e., we can learn nothing more. Auxiliary relations are

used only for predicates that are recursive in the current stratum; other relations are used directly.

Semi-naive evaluation is more complex in the presence of non-linearly recursive rules, where

a single rule is rewritten into multiple semi-naive rules referring to different auxiliary relations.

Consider the nonlinearly recursive reformulation of rule trans_step:

reach(X, Z) :- reach(X, Y), reach(Y, Z). // rule trans_guess

The Datalog engine rewrites trans_guess into two rules, one per occurrence of a recursive predicate:

Δ(reach)[𝑖](X, Z) :- 𝛿(reach)[𝑖−1](X, Y), reach[𝑖](Y, Z).

Δ(reach)[𝑖](X, Z) :- reach[𝑖](X, Y), 𝛿(reach)[𝑖−1](Y, Z).

Note that each rule accesses the reach relation as it stood at the beginning of that iteration.
2

Readers looking to learn more can consult Datalog surveys [Ceri et al. 1989; Green et al. 2013].

2.2 Soufflé
Soufflé [Jordan et al. 2016; Scholz et al. 2016] is a leading Datalog implementation designed specifi-

cally for static analysis workloads. It has many features; we focus on those relevant to this paper.

Foremost among these, Soufflé is itself a compiler: it compiles Datalog programs to an intermediate

representation—instructions on a notional relational algebra machine (RAM)—and then compiles

these instructions to C++ code. The resulting code can be linked against external C++ functions,

which can be invoked in Soufflé source code as functor calls, written @𝑓 cpp (t) (Figure 1).
A Horn clause is typically compiled into nested for loops. For example, the semi-naive version

of the trans_step rule (from above) is compiled into these loops (given in pseudo-Python):

pfor (x, y) in edge:

lb = (y, DOMAIN_MIN) # key for lower bound

ub = (y, DOMAIN_MAX) # key for upper bound

for (_, z) in 𝛿(reach)[𝑖−1].range_inclusive(lb, ub):

if (x, z) not in reach[𝑖]:
𝛿(reach)[𝑖].insert((x, z))

Soufflé parallelizes the outermost loop using an OpenMP parallel for loop [Dagum and Menon

1998]. This loop iterates over the entire edge relation; the next loop iterates over a slice of the

𝛿 (reach) [𝑖−1] relation that is extracted by making a range query (here, over the entire domain).

Much of the engineering and research behind Soufflé has gone into making these data structure

operations efficient. First off, Soufflé uses an optimal indexing strategy minimizing the number

of indices that need to be maintained for a relation [Subotić et al. 2018]. Second, Soufflé uses

concurrent tries [Jordan et al. 2019a] and B-trees [Jordan et al. 2019b] that have been specialized

2
Technically, the first rule can have reach[𝑖−1](Y, Z) instead of reach[𝑖](Y, Z), or alternatively the second rule can

have reach[𝑖−1](X, Y) instead of reach[𝑖](X, Y). This optimization materializes fewer combinations of tuples, since

reach[𝑖−1] ⊆reach[𝑖] (by the monotonicity of Datalog). However, neither Soufflé nor Formulog uses it.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 314. Publication date: October 2024.

314:8 Aaron Bembenek, Michael Greenberg, and Stephen Chong

Constructs
Programs prog

flg
::= T F Hflg

Functions 𝐹 ::= fun 𝑓 flg (X) = 𝑒

Horn clauses 𝐻flg
::= 𝑝 (e) :− Aflg

Atoms 𝐴flg
::= 𝑝 (e) | !𝑝 (e) | 𝑒 == 𝑒 | 𝑒 != 𝑒 | 𝑋 ← 𝑒 | 𝑒 → 𝑐 (X)

Constants 𝑘 ::= true | false | 𝑛 | . . .

Expressions 𝑒 ::= 𝑋 | 𝑘 | 𝑐 (e) | 𝑓 flg (e) | 𝑝 (e) | let 𝑋 = 𝑒 in 𝑒 |
if 𝑒 then 𝑒 else 𝑒 | match 𝑒 with [𝑐 (X) → 𝑒]∗

Additional namespaces
Type definitions 𝑇 ∈ TypeVar Constructors 𝑐 ∈ CtorVar

Function symbols 𝑓 flg ∈ FunVar

Fig. 2. A grammar for core Formulog, which extends Datalog with functional programming via algebraic
data type definitions 𝑇 , functions 𝐹 , and expressions 𝑒 . The functional language includes constructors for
building terms representing SMT formulas and functions for testing their satisfiability and extracting models.

for Datalog evaluation. These optimizations help make Soufflé a top-performing Datalog engine

on static analysis workloads [Fan et al. 2019], as evidenced by its use as the backbone of a slew

of static analysis platforms [Antoniadis et al. 2017; Flores-Montoya and Schulte 2020; Grech et al.

2019, 2018; Smaragdakis et al. 2021].

2.3 Formulog
Formulog [Bembenek et al. 2020b] is a recent Datalog variant for implementing static analyses that

use satisfiability-modulo-theories (SMT) solving [de Moura and Bjørner 2011], a key automated

reasoning technology that enriches boolean satisfiability (SAT) solving with predicate logic and

the ability to reason about common program constructs such as arrays, machine integers, and IEEE

floating point numbers.

We focus on a minimal core representation of Formulog (Figure 2). The key characteristic of

this representation is that unification predicates 𝑒 = 𝑒 have been replaced with three new types of

atoms: check atoms, assignment atoms, and destructor atoms. This representation is simpler to

interpret and compile, as it separates out and sequences heterogeneous operations that can occur

implicitly within a single unification. A check atom 𝑒 == 𝑒 holds if two expressions evaluate to

the same value, like an equality predicate. An assignment atom 𝑋 ← 𝑒 assigns the value of an

expression 𝑒 to a variable 𝑋 (which cannot be bound to a value beforehand; atoms are evaluated

left-to-right). A destructor atom 𝑒 → 𝑐 (X) fails if 𝑒 does not evaluate to a value with outermost

constructor 𝑐; otherwise, it assigns the constructor’s arguments to the variables X (which cannot

be bound). We write 𝑒 != 𝑒 to negate a check atom—like an inequality predicate—but assignment

and destructor atoms cannot be negated.

Beyond Horn clauses, Formulog supports first-order functional programming and SMT solving.

Formulog embeds a functional language with standard features like algebraic data types and

pattern matching. It also provides the ability for functional code to reference Datalog relations by

treating a predicate symbol 𝑝 as a function symbol. For example, if the tuple (0, 1) is a member

of the relation reach, the expression if reach(0, 1) then "yes" else "no" evaluates to the

string "yes", and evaluates to "no" otherwise. Formulog requires the use of predicates-as-functions

to be stratified: if evaluating a rule with head predicate symbol 𝑝 might run functional code that

invokes predicate 𝑞(e), predicate symbol 𝑞 must be in a lower stratum than predicate symbol 𝑝 .

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 314. Publication date: October 2024.

Making Formulog Fast: An Argument for Unconventional Datalog Evaluation 314:9

Formulog’s SMT support is built on top of its functional programming support: the various SMT

term constructors are simply built-in Formulog-level constructors. The built-in function is_sat

serializes its argument—a complex term representing an SMT formula—into the SMT-LIB standard

format [Barrett et al. 2016] and discharges it to an external SMT solver to check for satisfiability.

Formulog’s SMT API makes it easy to check validity and extract models, too.

The prototype Formulog system is 20k SLOC Java and uses semi-naive evaluation by default.
3

The Formulog runtime supports parallel evaluation, and each evaluation worker thread interacts

with its own stateful, external solver process. Modern SMT solvers support incremental solving [Eén

and Sörensson 2003], which benefits from query locality: solving is (often) faster if consecutive

queries to a given solver instance are similar. Formulog uses a few encoding tricks to increase the

number of conjuncts shared between queries on a given thread [Bembenek et al. 2020a].

3 Compiling Formulog to Soufflé
This section develops a compiler from Formulog to off-the-shelf Soufflé, first presenting the high-

level strategy (Section 3.1) and then implementation details (Section 3.2). In the mean, the generated

code has a 2.2× speedup over the Formulog interpreter and uses 38× less memory (Section 3.3).

3.1 Core Translation
The basic compilation strategy is to translate Formulog’s Datalog fragment to Soufflé code and its

functional fragment to C++ code accessible to the Soufflé code via external functors (Figure 3).

At the top level (Prog), the translation takes as input a Formulog program consisting of type

definitions, function definitions, andHorn clauses, and produces as output (Soufflé) Horn clauses and

C++ code. Translating a program consists of four main parts. First, the Formulog type information

is used to instantiate a skeleton C++ Formulog runtime. The runtime includes the standard library

and interface to external SMT solvers; type information is necessary to complete the representation

of terms and their serialization into SMT-LIB. Second, the Horn clauses and function definitions are

examined to produce administrative rules that constrain the Soufflé code to respect the semantics of

the source Formulog program, such as having the same stratification. Third, the function definitions

are compiled to C++ functions using standard compilation techniques for functional languages (the

only nonstandard feature being predicates 𝑝 (e) invoked as functions; discussed in Section 3.2.3).

Finally, each Horn clause in the Formulog program is translated in turn (Clause).

Translating a clause consists of translating the atoms in order, starting with the leftmost body

atom and concluding with the head of the rule (Clause). During this process, the compiler keeps

track of the variables that are used in the rule, so that it can generate fresh variables on demand.

Generic predicates 𝑝 (e) (PosPred) and !𝑝 (e) (rule omitted), equality checks 𝑒 == 𝑒 (Check) and

𝑒 != 𝑒 (rule omitted), and assignment 𝑋 ← 𝑒 (Assign) all compile down to single Soufflé atoms. On

the other hand, destructors 𝑒 → 𝑐 (X) compile down to multiple Soufflé atoms (Destruct), due to

a limitation in the current version of Soufflé (Section 3.2.2).

Expressions, which occur as arguments to atoms, are compiled to Soufflé terms two ways.

Variables are translated using the identity function (Var). For all other expressions (NonVar), the

compiler creates a fresh Formulog function definition with that expression as its body and the

expression’s free variables as its arguments, and translates the function to C++; the compiler then

emits an external functor call invoking the C++ function corresponding to the expression.

3.2 Implementation Details
Our compiler is 4,000 SLOC Java and the runtime is 3,000 SLOC C++.

3
All SLOC counts given in this paper are of non-blank, non-comment, physical lines.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 314. Publication date: October 2024.

314:10 Aaron Bembenek, Michael Greenberg, and Stephen Chong

Contexts and additional namespaces

Function and code contexts Γ ::= · | Γ, 𝑓 flg ↦→ 𝑓 cpp | Γ,𝐶
Logic variable contexts Δ ⊆ Var

C++ code 𝐶 ∈ CppCode

Program translation ⊢ JprogflgK⇒ Hdl,𝐶

Γ0 =𝑚𝑎𝑘𝑒𝐹𝑙𝑔𝑅𝑢𝑛𝑡𝑖𝑚𝑒 (T) Hdl

𝑎𝑑𝑚𝑖𝑛
=𝑚𝑎𝑘𝑒𝐴𝑑𝑚𝑖𝑛𝑅𝑢𝑙𝑒𝑠 (F Hflg)

|F| =𝑚 ∀𝑖 ∈ [0,𝑚). Γ𝑖 ⊢ JF[𝑖]K⇒ Γ𝑖+1
|Hflg | = 𝑛 ∀𝑖 ∈ [0, 𝑛). Γ𝑚+𝑖 ⊢ JHflg [𝑖]K⇒ 𝐻dl

𝑖 , Γ𝑚+𝑖+1 𝐶 = 𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝐶𝑜𝑑𝑒 (Γ𝑚+𝑛)
⊢ JT F HflgK⇒ Hdl

𝑎𝑑𝑚𝑖𝑛
++[𝐻dl

0
, . . . , 𝐻dl

𝑛−1],𝐶
Prog

(helper functions are defined in the extended version of this paper [Bembenek et al. 2024a])

Function translation Γ ⊢ J𝐹K⇒ Γ

(definition omitted; follows standard techniques)

Clause translation Γ ⊢ J𝐻flgK⇒ 𝐻dl, Γ

|Aflg | = 𝑛 Δ0 = 𝑣𝑎𝑟𝑠 (𝑝 (e) :− Aflg)
∀𝑖 ∈ [0, 𝑛). Γ𝑖 ,Δ𝑖 ⊢ JAflg [𝑖]K⇒ Adl

𝑖 , Γ𝑖+1,Δ𝑖+1
Γ𝑛,Δ𝑛 ⊢ J𝑝 (e)K⇒ [𝑝 (t)], Γ𝑓 𝑖𝑛𝑎𝑙 , _ Adl

𝑏𝑜𝑑𝑦
= Adl

0
++ · · · ++Adl

𝑛−1

Γ0 ⊢ J𝑝 (e) :− AflgK⇒ 𝑝 (t) :− Adl

𝑏𝑜𝑑𝑦
, Γ𝑓 𝑖𝑛𝑎𝑙

Clause

Atom translation Γ,Δ ⊢ J𝐴flgK⇒ Adl, Γ,Δ

|e| = 𝑛 ∀𝑖 ∈ [0, 𝑛). Γ𝑖 ⊢ Je[𝑖]K⇒ 𝑡𝑖 , Γ𝑖+1

Γ0,Δ ⊢ J𝑝 (e)K⇒ [𝑝 (𝑡0, . . . , 𝑡𝑛−1)], Γ𝑛,Δ
PosPred

Γ0 ⊢ J𝑒1K⇒ 𝑡1, Γ1 Γ1 ⊢ J𝑒2K⇒ 𝑡2, Γ2

Γ0,Δ ⊢ J𝑒1 == 𝑒2K⇒ [𝑡1 = 𝑡2], Γ2,Δ
Check

Γ ⊢ J𝑒K⇒ 𝑡, Γ′

Γ,Δ ⊢ J𝑋 ← 𝑒K⇒ [𝑋 = 𝑡], Γ′,Δ
Assign

Γ ⊢ J𝑒K⇒ 𝑡, Γ′ {𝑋,𝑌, 𝑍 } ∩ Δ = ∅
Adl

𝑑𝑡𝑜𝑟
= [𝑋 = 𝑡,@is_ctor𝑐 (𝑋) = 𝑌,move_barrier(𝑌, 𝑍)]

Adl

𝑎𝑠𝑠𝑖𝑔𝑛 = [𝑋0 = @nth(0, 𝑋, 𝑍), . . . , 𝑋𝑛−1 = @nth(𝑛 − 1, 𝑋, 𝑍)]
Γ,Δ ⊢ J𝑒 → 𝑐 (𝑋0, . . . , 𝑋𝑛−1)K⇒ Adl

𝑑𝑡𝑜𝑟
++Adl

𝑎𝑠𝑠𝑖𝑔𝑛, Γ
′,Δ ∪ {𝑋,𝑌, 𝑍 }

Destruct

Expression translation Γ ⊢ J𝑒K⇒ 𝑡, Γ

Γ ⊢ J𝑋 K⇒ 𝑋, Γ
Var

𝑒 ∉ Var 𝑓 flg fresh in Γ X = 𝑓 𝑟𝑒𝑒𝑉𝑎𝑟𝑠 (𝑒)
Γ ⊢ Jfun 𝑓 flg (X) = 𝑒K⇒ Γ′ Γ′ (𝑓 flg) = 𝑓 cpp

Γ ⊢ J𝑒K⇒ @𝑓 cpp (X), Γ′
NonVar

Fig. 3. Rules for translating from Formulog to Soufflé. Negative predicates !𝑝 (e) and inequality predicates 𝑒 !=
𝑒 can be translated analogously to their positive counterparts. We use the notation ++ for list concatenation.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 314. Publication date: October 2024.

Making Formulog Fast: An Argument for Unconventional Datalog Evaluation 314:11

3.2.1 Representing Values. Formulog values are represented as integers in the Soufflé code and as

C++ objects in our C++ runtime. The runtime performs hash consing during all value creation, so

that there is exactly one C++ object per Formulog value. This allows us to use the memory address

of a Formulog object as the integer representation of that value in Soufflé; translating values as

they flow between Soufflé and our runtime is as simple as casting.

An alternative would be to embed Formulog values into Soufflé’s type system, which supports

algebraic data types. We decided against this approach for four reasons. First, there is not a natural

translation between Formulog’s type system and Soufflé’s. For example, Formulog has multiple

widths of integers, whereas Soufflé has just one; Formulog data types have ML-style parametric

polymorphism, whereas Soufflé has templates. Second, our approach gives us more control over

the memoization of terms. Third, it frees us from having to use Soufflé’s internal representation

of complex values in the C++ code we generate for Formulog expressions. Fourth, Soufflé (as of

v2.4) does not support unpacking complex terms returned from external functors—i.e., getting their

arguments—and so most manipulation of terms would need to occur outside Soufflé anyway.

3.2.2 Compiling Destructors. Because of a current limitation in Soufflé, each Formulog destructor

atom is compiled to multiple Soufflé atoms (Destruct; see discussion in the extended version of

this paper [Bembenek et al. 2024a]). It should in principle be straightforward to compile a destructor

atom to a single Soufflé atom using Soufflé’s support for complex terms; however, this currently

leads to an assertion failure within the Soufflé code generator. While we expect this limitation to

be fixed in a future version of Soufflé, we do not believe that the current clunky translation leads to

a substantial runtime cost.

3.2.3 Reifying Relations. In addition to standard functional programming fare, Formulog supports

querying relations from functional code, by invoking predicates 𝑝 (e) as functions. We need to

account for this both in our generated C++ code and Soufflé code. On the C++ side, when the

main driver of the executable creates an instance of the Soufflé program (i.e., a value of type

souffle::SouffleProgram), it stores it into a global variable before executing it. This allows us to

generate C++ code that looks up the content of relations while the Soufflé program is running. On

the Soufflé side, we create administrative rules to make sure that the stratification of the Soufflé

program lines up with the stratification of the Formulog program: the use of predicates as functions

must be stratified (as mentioned in Section 2.3), but Soufflé does not see the functional code. For

example, a rule defining a nullary relation p might invoke a function f, which in turn queries the

emptiness of a nullary relation q. To force Soufflé to put relation p in a higher stratum than q, we

generate the rule p() :- empty(), !q(). (where empty is an empty administrative relation).

3.3 Evaluation
The code generated by our compiler beats the Formulog interpreter on the case studies and

benchmarks from the Formulog paper [Bembenek et al. 2020b] (Figure 4), achieving a mean

speedup of 2.2× (min/median/max: 1.0×/1.7×/4.3×) and using 38× less memory in the mean (min

/median/max: 6.7×/20×/110×).4 The baseline interpreter we compared against is an improved

version of the one used in the original Formulog paper (e.g., it now completes on all benchmarks,

whereas it previously timed out on three); we also manually tuned some of the baseline interpreter’s

parameters to achieve better performance, and resolved various performance anomalies.

We ran all experiments on an Ubuntu 22.04 m5.12xlarge Amazon Web Services EC2 instance,

with an Intel Xeon processor clocked at 3.1GHz, 24 physical cores (48 vCPUs), and 192GiB RAM.

We use OpenJDK v17.0.7 as our Java runtime, g++ v11.3.0 as our C++ compiler, Z3 [de Moura and

4
All means reported in this paper are arithmetic.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 314. Publication date: October 2024.

314:12 Aaron Bembenek, Michael Greenberg, and Stephen Chong

0 500 1000

Runtime (s)

dminor

scuba

symex

C
as

e
st

u
d

y

0 50 100 150

Memory usage (GB)

interpret

compile

Fig. 4. Formulog compiled to off-the-shelf Soufflé achieves a 2.2× mean speedup over the baseline Formulog
interpreter, while also using 38× less memory in the mean. Left is better; we omit compilation time (static
analyses are compiled once and executed many times).

Bjørner 2008] v4.12.2 (commit f7c9c9e) as our SMT solver, and Soufflé v2.4. Both the generated

code and the Formulog interpreter are configured to use 40 threads.

To compute the runtime on a benchmark, we take the median of 10 trials. We omit compilation

times, on the basis that the Formulog programs in this benchmark suite are static analyses that are

intended to be compiled once and then executed many times. Compilation time is dominated by

the time it takes to compile the C++ code generated by Soufflé, which can take up to a few minutes.

The benchmarks fall into three case studies representing different SMT-based static analyses,

each consisting of 1-1.5K lines of Formulog code (for details, see the original Formulog paper [Bem-

benek et al. 2020b]). We updated the code to work with newer versions of Formulog and to avoid

unevaluated expressions in input facts (which the C++ runtime parser does not currently support).

Refinement Type Checking (dminor). This case study is a type checker for Dminor [Bierman et al.

2012], a language combining refinement types and dynamic type tests. We categorize this case study

as “SMT heavy” as the SMT solver is frequently invoked during type checking to prove subtyping

relations and the termination of expressions (in the longest-running benchmark, 96k external SMT

solver calls are made). The SMT formulas are also particularly complex, as they touch on many SMT

theories and include constructs like universally quantified formulas. The three benchmarks are

synthetic, created by composing all publicly available Dminor programs (that use the core language

only) and then copying the composite program 𝑛 times, for 𝑛 ∈ {1, 10, 100}.5 For the benchmark

with 100 copies of the base program (all-100), there are 4600 input tuples and 1.7 million output

tuples; the most computationally intensive part of this case study is the SMT solving. On this case

study the compiler achieved a mean speedup of 1.9× (min/median/max: 1.2×/1.2×/3.2×).

Bottom-Up Points-To Analysis (scuba). This context-sensitive, bottom-up points-to analysis for

Java uses SMT formulas to summarize methods [Feng et al. 2015]. While SMT solving is used when

5
The copies are transformed so that they are not syntactically equal, which in turn means that the SMT queries generated

by Formulog for each copy are also not syntactically equal. Because the base program exercises many parts of the core

Dminor calculus, we believe this approach of Bembenek et al. [2020b] to synthesizing benchmarks leads to a reasonable

approximation of the workloads that would be induced by variously sized Dminor developments, were they to exist.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 314. Publication date: October 2024.

Making Formulog Fast: An Argument for Unconventional Datalog Evaluation 314:13

function summaries are instantiated, we categorize this case study as “SMT light” because few

external SMT calls are made in practice (many potential SMT queries can instead be resolved by

basic preprocessing done in the analysis code). Additionally, a relatively small proportion of the

analysis (20%) is written in Formulog’s functional fragment; hence, of the three case studies, this

one most closely resembles conventional Datalog programs. The 10 benchmarks are substantial

Java applications used in the evaluation of the original implementation of this analysis [Feng et al.

2015], drawn primarily from existing Java benchmark suites including DaCapo [Blackburn et al.

2006]. Accordingly, these benchmarks have large numbers of input and output facts, with input fact

databases ranging from 65k tuples (weblech) to 1.5 million tuples (xalan), and output fact databases

ranging from 4.3 million tuples (polyglot) to 120 million tuples (sunflow). On this case study the

compiler achieved a mean speedup of 3.2× (min/median/max: 1.3×/3.4×/4.3×).

Symbolic Execution (symex). This case study is a bounded symbolic executor for a fragment of

LLVM bitcode in the style of KLEE [Cadar et al. 2008]. The 10 benchmark programs are compiled C

programs that perform operations like array sorting, solving logic puzzles, and interpreting bitcode.

As the benchmarks are synthetic and need to fit within the supported fragment of LLVM, the source

code for each benchmark is generally small in terms of lines of code; however, because many of

the programs loop over symbolic data, the number of states to symbolically explore can be quite

large. We categorize this case study as “SMT heavy” as SMT calls are made frequently, any time the

symbolic executor reaches a branch point conditioned on symbolic data (220k external SMT solver

calls are made in sort-7, the benchmark with the most SMT calls). The largest input fact database is

6000 tuples (prioqueue-6), but the largest output fact database is 28 million tuples (sort-7). On this

case study the compiler achieved a mean speedup of 1.4× (min/median/max: 1.0×/1.4×/2.0×).

4 Eager Evaluation
The Soufflé code generated by our compiler outperforms the Formulog interpreter when both

perform semi-naive evaluation. This is hardly surprising, as using Soufflé has many advantages

over using the Formulog prototype, such as compilation instead of interpretation, C++ instead of

Java, and data structures specialized for Datalog instead of generic ones.

What is surprising is that we can do better, and with relatively little effort. There are many

possible ways to evaluate a Datalog program, which is declarative: a Datalog program comprises

some logical inference rules with no stipulations as to how to discover the rules’ consequences. We

need not be beholden to the standard strategy. In fact, one might even expect that new Datalog

variants would put different stresses on Datalog engines than traditional Datalog workloads, and

thus would benefit from alternative Datalog evaluation strategies. (In fact, even different Datalog
workloads benefit from different implementation techniques [Fan et al. 2019].)

Formulog indeed differs from traditional Datalog: external SMT solving is typically one of the

most expensive parts of evaluating a Formulog program. This section presents eager evaluation, an
alternative, worklist-based strategy for parallel Datalog evaluation that achieves a quasi-depth-first

search of the logical inference space by submitting inference tasks to a work-stealing thread pool.
6

Compared to semi-naive evaluation, which performs a breadth-first search, eager evaluation entails

a different distribution of SMT calls across worker threads (and thus external SMT solvers); in

practice, it tends to lead to better SMT solving times. For example, on some Formulog programs,

eager evaluation ends up putting similar SMT calls on the same worker thread, leading to more

6
In a work-stealing thread pool [Arora et al. 1998; Blumofe and Leiserson 1999; Mohr et al. 1990], each worker thread

maintains a last-in-first-out (LIFO) stack of work items. Since work items in our setting correspond to logical derivations,

the LIFO discipline leads to the most recent derivations being explored first; see additional discussion in Section 4.2.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 314. Publication date: October 2024.

314:14 Aaron Bembenek, Michael Greenberg, and Stephen Chong

0

1 3

2 4

ϕ(0,1)

ϕ(1,3)

ϕ(0,2)

ϕ(2,4)

(* base case *)

reach(0, `true`).

(* recursive case *)

reach(Y, `Phi /\ Psi`) :-

reach(X, Phi),

edge(X, Y, Psi),

is_sat(`Phi /\ Psi`) = true.

Fig. 5. A Formulog program computes reachability over a tree labeled with SMT propositions 𝜙 (𝑖, 𝑗) by using
the built-in constructor for conjunction (/\) and the built-in function is_sat to check satisfiability. Backticks
demarcate SMT formulas.

effective incremental SMT solving. Using eager evaluation, the Formulog interpreter beats the

semi-naive code generated by Soufflé on SMT-heavy benchmarks (Section 5.3).

This section motivates eager evaluation (Section 4.1), describes the high-level algorithm (Sec-

tion 4.2), and proves its correctness (Section 4.3).

4.1 Motivating Eager Evaluation
To motivate eager evaluation, consider the task of computing reachability on trees where the

edges are labeled with logical propositions. The root node is trivially reachable. Some other node

𝑛 is reachable if its parent𝑚 is reachable from the root node via a 𝑘-hop path with edge labels

𝜙1, . . . , 𝜙𝑘 , there is an outgoing edge from node𝑚 with label𝜓 to a child node 𝑛, and the conjunction

𝜙1 ∧ · · · ∧𝜙𝑘 ∧𝜓 is satisfiable—that is, reachability is as in a directed graph, modulo satisfiability of

path conditions. This setting exemplifies a fundamental problem in real static analyses, mimicking

how symbolic execution explores program execution trees.

For the sake of concreteness, say we run the Formulog program computing this type of graph

reachability on a sample tree (Figure 5), using a single thread of execution. If we use semi-naive

evaluation, the programwill discover nodes in a breadth-first order: 0-1-2-3-4. Doing so involves four

SMT calls, which occur in this order: 𝜙 (0,1) , 𝜙 (0,2) , 𝜙 (0,1) ∧𝜙 (1,3) , and 𝜙 (0,2) ∧𝜙 (2,4) . Because adjacent
calls do not share any conjuncts, the SMT solver is not able to naturally perform incremental SMT

solving; in the worst case, it would have to clear its state between calls that do share conjuncts.
And, while Formulog does use some tricks to encode conjuncts in the SMT solver’s state so that

they can be disabled and enabled in subsequent calls [Bembenek et al. 2020a], these techniques are

necessarily limited and introduce overhead.

In contrast, if onewere to compute reachability over the example graph using a Datalog evaluation

that simulates depth-first search, we might encounter the nodes in the order 0-1-3-2-4, inducing

SMT calls in the order 𝜙 (0,1) , 𝜙 (0,1) ∧ 𝜙 (1,3) , 𝜙 (0,2) , and 𝜙 (0,2) ∧ 𝜙 (2,4) . This order naturally leads to

incremental SMT solving, since the first two calls share a conjunct, as well as the last two calls. For

example, by checking the satisfiability of the proposition 𝜙 (0,1) , the solver might learn information

useful for checking the satisfiability of the conjunction 𝜙 (0,1) ∧ 𝜙 (1,3) .
In general, semi-naive evaluation computes a breadth-first search through the logical inference

space: it computes derivations of height 𝑘 only after it has computed all derivations of height

less than 𝑘 . For the example of graph reachability, this quite literally matches breadth-first graph

traversal. If we were in the world of Datalog and concerned solely with computing structural

reachability in the graph (irrespective of the satisfiability of path conditions), there would not be

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 314. Publication date: October 2024.

Making Formulog Fast: An Argument for Unconventional Datalog Evaluation 314:15

an obvious cost to performing breadth-first search compared to some other traversal. However,

given that we are in the world of Formulog and need to respect the satisfiability of path conditions,

order does matter: depth-first search leads to more opportunities for incremental SMT solving. Put

another way, we want a Datalog evaluation strategy that prioritizes computing the consequences

of the most recently derived fact—i.e., finding those facts where the most recently derived fact

appears in the proof tree—instead of processing facts in order of the height of their proof trees.

This is what motivates eager evaluation: a Datalog evaluation strategy that, by being closer to

depth-first search, leads to different and hopefully advantageous SMT workloads for Formulog

programs, while staying amenable to effective parallelization.

4.2 Eager Evaluation: Parallel, Most-Recent-First Search
Eager evaluation explores the inference space using a parallelized, DFS-like search. Making deriva-

tions in a strict depth-first order would lead to poor parallelism; instead, eager evaluation performs

a more relaxed traversal strategy we think of as “most-recent-first search.” This retains the spirit of

DFS—it prioritizes processing the most recently derived facts—while being naturally parallelizable.

Similar to semi-naive evaluation, eager evaluation is applied one stratum at time, making it

compatible with stratified negation [Apt et al. 1988; Przymusinski 1988; Van Gelder 1989] and

stratified aggregation [Mumick et al. 1990]. It is a worklist-based scheme: initial work items are

submitted to the worklist; work items recursively submit new work items; evaluation is finished

once the worklist is empty. To both parallelize evaluation and achieve a most-recent-first order,

eager evaluation uses a work-stealing thread pool for the worklist [Arora et al. 1998; Blumofe and

Leiserson 1999; Mohr et al. 1990]. Each worker thread in the pool maintains a dequeue of work items

that it pops from the back using the last-in-first-out stack discipline; since a work item corresponds

to a new inference to explore, this discipline prioritizes recent derivations, and thus approximates

a depth-first traversal through the logical inference space. If a worker thread’s dequeue becomes

empty, it steals from the front of a random thread’s dequeue using the first-in-first-out queue

discipline, leading to lower thread contention, and often good locality.

Each work item submitted to the thread pool represents a rule to evaluate. There are two types

of work items, representing different types of rules. The first type represents a rule that is not

recursive in the current stratum; that is, all the body predicates are defined in previous strata. These

are the initial work items (one per non-recursive rule). The second type of work item represents

a recursive rule that has been specialized to a particular fact 𝑝 (n). To specialize a rule, 1) unify a

body atom 𝑝 (t) with the fact 𝑝 (n) to get a substitution from variables to constants; 2) apply this

substitution across the rule; and 3) reorder the rule so that the body atom 𝑝 (n) is first. For example,

consider the trans_step rule for graph transitive closure (Section 2.1):

reach(X, Z) :- edge(X, Y), reach(Y, Z).

Specialized to the fact reach(0, 1), the rule would become

reach(X, 1) :- reach(0, 1), edge(X, 0).

Specialization can fail if the body atom 𝑝 (t) cannot be unified with the fact 𝑝 (n); for example, the

body atom is p(0) and the fact is p(1).

When a work item is processed, it computes the direct consequences of the rule it corresponds

to, with respect to the current contents of relations. This differs from semi-naive evaluation, which

refers to the contents of relations at the beginning of the iteration (i.e., it indexes into relations of

the form 𝑝 [𝑖]); eager evaluation does not have explicit iterations and instead works in an unbatched,

“tuple at a time” fashion. The fact that rule evaluation uses more up-to-date relations than in

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 314. Publication date: October 2024.

314:16 Aaron Bembenek, Michael Greenberg, and Stephen Chong

Algorithm 1 Function workerThread(i) gives the core logic performed by each worker thread 𝑖

in eager evaluation. For each worker thread 𝑖 , there is a worklist (deque) 𝐷𝑖 ; for each predicate 𝑝 ,

there is a fact database 𝐷𝐵𝑝 . Worklists and databases must be thread safe.

1: function workerThread(𝑖)

2: loop
3: ⊲ Dequeue a work item (a rule to evaluate) ⊳

4: 𝑅 ← 𝐷𝑖 .𝑑𝑒𝑞𝑢𝑒𝑢𝑒𝐵𝑎𝑐𝑘 () ⊲ Use LIFO discipline for local worklist
5: while 𝑅 = ⊥ ∧𝑤𝑜𝑟𝑘𝐿𝑒 𝑓 𝑡 () do ⊲ Scan other threads if local worklist is empty
6: 𝑗 ← 𝑐ℎ𝑜𝑜𝑠𝑒𝑅𝑎𝑛𝑑𝑜𝑚𝑇ℎ𝑟𝑒𝑎𝑑 ()
7: 𝑅 ← 𝐷 𝑗 .𝑑𝑒𝑞𝑢𝑒𝑢𝑒𝐹𝑟𝑜𝑛𝑡 () ⊲ Use FIFO discipline if stealing from another thread
8: if 𝑅 = ⊥ then ⊲ No work left in thread pool
9: break
10: ⊲ Evaluate rule 𝑅, eagerly yielding facts as they are derived (i.e., no batching) ⊳

11: for all 𝑝 (n) ∈ evalRule(𝑅) do
12: if 𝐷𝐵𝑝 .𝑎𝑑𝑑𝐼 𝑓 𝐴𝑏𝑠𝑒𝑛𝑡 (n) then ⊲ True when tuple n is novel
13: for all 𝑅′ ∈ 𝑠𝑝𝑒𝑐𝑖𝑎𝑙𝑖𝑧𝑒𝑅𝑢𝑙𝑒𝑠 (𝑝 (n)) do
14: 𝐷𝑖 .𝑒𝑛𝑞𝑢𝑒𝑢𝑒𝐵𝑎𝑐𝑘 (𝑅′) ⊲ Insert work item in back of current thread’s worklist

15: function evalRule(𝑝0 (t0) :− 𝑝1 (t1), 𝑝2 (t2), . . . , 𝑝𝑛 (t𝑛).)
16: 𝜎1 = 𝜆𝑥 .⊥ ⊲ Start with empty substitution
17: for all n1 ∈ 𝐷𝐵𝑝1 .𝑞𝑢𝑒𝑟𝑦 (𝜎1 (t1)) do ⊲ Iterate through tuples matching key
18: 𝜎2 = 𝜎1 ◦ [t1 ↦→ n1] ⊲ Compose substitutions
19: for all n2 ∈ 𝐷𝐵𝑝2 .𝑞𝑢𝑒𝑟𝑦 (𝜎2 (t2)) do
20: 𝜎3 = 𝜎2 ◦ [t2 ↦→ n2]
21: . . .

22: for all n𝑛 ∈ 𝐷𝐵𝑝𝑛 .𝑞𝑢𝑒𝑟𝑦 (𝜎𝑛 (t𝑛)) do
23: 𝜎𝑛+1 = 𝜎𝑛 ◦ [t𝑛 ↦→ n𝑛]
24: yield 𝑝0 (𝜎𝑛+1 (t0)) ⊲ Eagerly yield derived facts (do not batch them)

semi-naive evaluation does not impact correctness, but it does mean that eager evaluation can

materialize some redundant combinations of tuples avoided in semi-naive evaluation.

If a new fact 𝑝 (n) is derived for some constants n, we add the fact to the 𝑝 relation and immediately

use it to create new work items. Say there are 𝑘 occurrences of predicates shaped like 𝑝 (t) in the

bodies of rules that are recursive in the current stratum; the algorithm will try to submit 𝑘 new

work items, one for each occurrence, specializing the body atom 𝑝 (t) in the relevant rule to the

new fact 𝑝 (n). Fewer than 𝑘 work items might be submitted if specialization fails in some case.

4.2.1 Pseudocode. Algorithm 1 gives pseudocode for the logic implemented by each worker thread

𝑖 during eager evaluation. The function workerThread gives the core procedure performed by

thread 𝑖 , which loops until there is no work left to do (line 8). In each iteration, thread 𝑖 first tries

to dequeue a work item from the back of its own deque (line 4); if this fails because the deque

is empty (the returned work item is ⊥), it repeatedly tries to steal a work item from the deques

of the other threads (lines 5-7), scanning until it successfully steals a work item or the function

call 𝑤𝑜𝑟𝑘𝐿𝑒 𝑓 𝑡 () returns false (indicating that all threads are trying to steal work items, and so

all deques are empty). In practice, the work-stealing thread pool—not code implemented by the

Datalog system engineer—distributes work items and decides when to terminate the threads. Once

thread 𝑖 has a work item in the form of a rule 𝑅, the thread evaluates rule 𝑅 using the function

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 314. Publication date: October 2024.

Making Formulog Fast: An Argument for Unconventional Datalog Evaluation 314:17

evalRule; the evaluation code (lines 16-24) is standard for Datalog, except that facts are eagerly

yielded as they are derived (line 24). That is, the function evalRule returns a fact generator, instead
of a concrete set of facts. For each generated fact, thread 𝑖 checks if that fact is novel (line 12); if so,

it adds a work item to the end of its deque for each rule specialized to that fact (lines 13-14).

Because the code in the evalRule function is very similar to the code used to evaluate a rule

in semi-naive evaluation (cf. Section 2.1) and uses the same set of data structure operations (e.g.,

looping over the index of a relation), we are able to heavily reuse existing Datalog infrastructure

when implementing eager evaluation, as we demonstrate in Section 5.

4.3 Correctness of Eager Evaluation
Eager evaluation is correct; in particular, one can prove the following theorem (see the extended

version of this paper [Bembenek et al. 2024a] for the complete proofs of all theorems):

Theorem 4.1 (Correctness). Given an arbitrary Datalog program, eager evaluation and semi-
naive evaluation derive exactly the same facts.

The proof of Theorem 4.1 rests on two lemmas, both of which make a claim about the behavior of

eager evaluation on a given stratum (as opposed to the complete Datalog program). First, eager

evaluation is sound on the stratum: it derives only the facts derived by semi-naive evaluation

(Lemma 4.2). Second, eager evaluation is complete on the stratum: it derives all the facts derived by

semi-naive evaluation (Lemma 4.3).

Lemma 4.2 (Soundness). Fixing the facts derived in previous strata, if eager evaluation derives a
fact 𝑎0 in the current stratum, semi-naive evaluation also derives fact 𝑎0 in the current stratum.

Lemma 4.3 (Completeness). Fixing the facts derived in previous strata, if semi-naive evaluation
derives a fact 𝑎0 in the current stratum, eager evaluation also derives fact 𝑎0 in the current stratum.

Completeness is significantly more complex to prove than soundness; in fact, it relies on some (mild)

assumptions about the behavior of the concurrent mechanisms used to implement Algorithm 1.

Completeness is challenging to prove because eager evaluation is a concurrent algorithm that

uses little explicit synchronization, and so there appears to be the possibility that data races result

in the failure to derive a fact. For example, consider evaluating the rule s(3) :- p(1), q(2).

Call this rule 𝑅, and assume that the predicates p and q are recursive in the current stratum. In a

multithreaded setting, the derivation of the facts p(1) and q(2) might lead to two work items that

are processed concurrently, one specialized to fact p(1) and one specialized to fact q(2). Because

of data races between the writing and reading of relations, one might worry that both work items

fail to derive the fact s(3)—i.e., could it be that the derivation of the fact q(2) is not visible in

the work item specialized to p(1) and vice versa? Thankfully, no! If one work item fails because

of a data race, the other one necessarily succeeds. Here, we informally demonstrate why eager

evaluation is complete on this example; see the extended version of this paper [Bembenek et al.

2024a] for a formal proof of the general case.

When facts p(1) and q(2) are derived, these events occur (line numbers refer to Algorithm 1):

• Write𝑤1,𝑝 (line 12): the fact p(1) is added to data structure 𝐷𝐵𝑝 . Subsequently, Work Item 1

specializing rule 𝑅 on p(1) is submitted to the thread pool (line 14).

• Execution start 𝑥1,𝑝 (line 4 or 7): Work Item 1 is dequeued to be executed.

• Read 𝑟1,𝑞 (line 19): the data structure 𝐷𝐵𝑞 is read when Work Item 1 is processed.

• Write𝑤2,𝑞 (line 12): the fact q(2) is added to data structure 𝐷𝐵𝑞 . Subsequently, Work Item 2

specializing rule 𝑅 on q(2) is submitted to the thread pool (line 14).

• Execution start 𝑥2,𝑞 (line 4 or 7): Work Item 2 is dequeued to be executed.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 314. Publication date: October 2024.

314:18 Aaron Bembenek, Michael Greenberg, and Stephen Chong

• Read 𝑟2,𝑝 (line 19): the data structure 𝐷𝐵𝑝 is read when Work Item 2 is processed.

The completeness of eager evaluation rests on a transitive happens-before relationship→ between

these events; we require the happens-before relationship to meet the following conditions:

(1) Reads and writes on the same data structure are ordered:

(𝑟1,𝑞 → 𝑤2,𝑞 ∨𝑤2,𝑞 → 𝑟1,𝑞) ∧ (𝑟2,𝑝 → 𝑤1,𝑝 ∨𝑤1,𝑝 → 𝑟2,𝑝).
This condition would be satisfied by using linearizable concurrent data structures [Herlihy

and Wing 1990], a common notion of concurrent data structure correctness.

(2) Reads that occur in a work item happen after that work item starts executing: 𝑥1,𝑝 →
𝑟1,𝑞 ∧ 𝑥2,𝑞 → 𝑟2,𝑝 . In general, the happens-before relation should respect program order.

(3) Writes happen before the work items they spawn:𝑤1,𝑝 → 𝑥1,𝑝 ∧𝑤2,𝑞 → 𝑥2,𝑞 . This condition

is a basic visibility requirement. In the pseudocode, it would be sufficient if each deque 𝐷𝑖 is

linearizable; in practice, a thread pool would likely guarantee this condition by performing

some form of synchronization when it handles the distribution of work items.

These mild assumptions are reasonable to meet in practice.

To show that fact s(2) is derived, it is enough to show that 𝑤1,𝑝 → 𝑟2,𝑝 holds or 𝑤2,𝑞 → 𝑟1,𝑞
holds—that is, the write of p(1) is visible in Work Item 2 or the write of q(2) is visible in Work

Item 1. By Assumption (1), we have the disjunction 𝑟1,𝑞 → 𝑤2,𝑞 ∨𝑤2,𝑞 → 𝑟1,𝑞 . If the second disjunct

is true, Work Item 1 will derive fact s(2). Otherwise, we have (read left-to-right, top-to-bottom):

𝑤1,𝑝 → 𝑥1,𝑝 (Assumption (3)) 𝑥1,𝑝 → 𝑟1,𝑞 (Assumption (2)) 𝑟1,𝑞 → 𝑤2,𝑞 (Disjunct case)

𝑤2,𝑞 → 𝑥2,𝑞 (Assumption (3)) 𝑥2,𝑞 → 𝑟2,𝑝 (Assumption (2))

Thus, by transitivity, we have that𝑤1,𝑝 → 𝑟2,𝑝 holds, and Work Item 2 will derive fact s(2).

5 Eager Evaluation in Practice
This section discusses our experience adding eager evaluation to the Formulog interpreter (Sec-

tion 5.1) and Soufflé’s code generator (Section 5.2), and shows that eager evaluation is a practical

and effective strategy for evaluating Formulog programs (Section 5.3): the eager evaluation mode of

the interpreter achieves a mean speedup of 5.2× over the semi-naive code generated by Soufflé on

SMT-heavy benchmarks, and the eager evaluation extension to (compiled) Soufflé achieves a mean

1.8× speedup over the Formulog interpreter’s eager evaluation mode and a mean 7.6× speedup

over off-the-shelf Soufflé. Thus, Formulog is an example of a Datalog variant that benefits from a

non-standard evaluation technique; moreover, this technique can be built on top of existing Datalog

infrastructure with relatively low effort.

5.1 Extending the Formulog Interpreter
Our implementation of eager evaluation in the Formulog interpreter consists of two parts: a short

method that reorders the bodies of semi-naive rules so that 𝛿-predicates come first,
7
and a class that

evaluates a stratum of the Formulog program using eager evaluation (200 lines of Java). The classes

for eager evaluation and semi-naive evaluation both descend from a shared abstract class (200

lines); both use a work-stealing thread pool (a java.util.concurrent.ForkJoinPool instance)

to handle parallelism; and both store relations in the same indexed data structures built around

java.util.concurrent.ConcurrentSkipListSet instances. The remaining logic (and code) in

each class is also very similar, with the main difference occurring when a new tuple is derived: in

7
Our implementations lazily specialize rules to new facts—i.e., during work item evaluation, not during work item creation

(as in Algorithm 1). Recall that 𝛿-relations are auxiliary relations used to focus traditional semi-naive evaluation on newly

derived tuples (Section 2.1). When a work item is processed, the given rule is run on a singleton, mock 𝛿-relation containing

just the tuple to specialize on. Since the mock 𝛿-predicate is the first atom, this has the effect of specializing the rule.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 314. Publication date: October 2024.

Making Formulog Fast: An Argument for Unconventional Datalog Evaluation 314:19

eager evaluation, new work items are submitted corresponding to rules specialized on that tuple;

in semi-naive evaluation, the new tuple is added to an auxiliary relation.

5.2 Extending Soufflé’s Code Generator
Our extension to Souffle’s code generator consists of three parts: a short class for reordering semi-

naive rule bodies so that 𝛿-predicates are first, modifications to the code generator for semi-naive

rules, and modifications to the code generator for the data structures representing relations. The

latter two occur during the translation from relational algebra machine (RAM) instructions to

C++. RAM instructions capture high-level imperative operations, like scanning the index of a data

structure, or inserting a tuple into a relation. To support eager evaluation, we change the translation

of some RAM instructions. For example, we change insert instructions to insert a new tuple into

the base relation (instead of an auxiliary relation), and to submit new work items representing

rules specialized on that tuple. We also modify code generation so that the logic for evaluating a

rule is wrapped up in its own function; consequently, a work item’s single operation is to invoke a

“rule function” on the new tuple. Work items are submitted to a task_group instance from Intel’s

oneAPI Thread Building Blocks (oneTBB) concurrency library
8
; this uses a work-stealing thread

pool on the backend to process tasks.

In addition to modifying code generation for rule evaluation, we modify code generation for

the data structures representing relations. This is required because of a limitation in Soufflé’s

concurrent data structures, which do not support concurrent reads and writes. Because there are

distinct reading and writing phases in semi-naive evaluation, the Soufflé implementors have added

only the synchronization necessary for multiple reads happening simultaneously or multiple writes

happening simultaneously. To get around this, we use instances of oneTBB’s concurrent_set class

for indices where necessary. These sets are based on concurrent skip lists and are much slower than

Soufflé’s specialized B-trees and tries. Accordingly, we use oneTBB’s concurrent sets for an index

only if it is accessed when evaluating a non-“delta” recursive predicate in a rule body (a necessary

condition for an index being read and written concurrently). Programs with only linearly recursive

rules can thus get away with using just Soufflé’s data structures.

All in all, our modifications required adding just 500 lines of C++ to Soufflé (which is 70k lines

of C++, including code not involved in compilation). The eager evaluation code generator can

in principle be used to compile arbitrary Datalog programs, and is agnostic to the fact that we

use it as part of a compiler for Formulog programs. However, our extension does not currently

support all of Soufflé’s RAM instructions (we focus on those used during our case studies), nor

all of Soufflé’s additional machinery (e.g., provenance tracking). To link with code generated for

eager evaluation, we made minor modifications to the Formulog C++ runtime (for example, using

oneTBB’s abstraction for thread-local variables instead of OpenMP’s).

5.3 Evaluation
We first summarize the experimental results across the benchmark suite (Section 5.3.1), and then

detail the results for each case study (Sections 5.3.2 and 5.3.3). We also evaluate how well eager

evaluation scales with the number of threads compared to semi-naive evaluation (Section 5.3.4).

5.3.1 Summary. Eager evaluation leads to speedups on SMT-heavy benchmarks (Figure 6). In

particular, on the dminor refinement type checker and the symex symbolic executor, the interpreter’s

eager evaluation mode (“interpret-eager”) achieves a 5.2× mean speedup (min/median/max: 0.41×
/1.2×/31×) over the code generated by our initial compiler (“compile”); in turn, using the eager

evaluation extension to Soufflé (“compile-eager”) achieves a 1.8× mean speedup (min/median/
8
https://www.intel.com/content/www/us/en/developer/tools/oneapi/onetbb.html

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 314. Publication date: October 2024.

https://www.intel.com/content/www/us/en/developer/tools/oneapi/onetbb.html

314:20 Aaron Bembenek, Michael Greenberg, and Stephen Chong

0 200 400 600

Runtime (s)

dminor

symex

C
as

e
st

u
d

y

0 1000 2000 3000

SMT solving time (s)

interpret compile interpret-eager compile-eager

Fig. 6. Eager evaluation achieves speedups on SMT heavy benchmarks over semi-naive evaluation, primarily
by improving SMT solving times (eager evaluation’s finer-grained parallelism also helps to a small degree).
Note that the CPU time of SMT solving (as shown in the right plot) does not capture the full extent to which
eager evaluation’s redistribution of SMT work can lead to lower SMT solving wall-clock time (e.g., eager
evaluation might induce two SMT queries to be solved in parallel instead of sequentially; the CPU time spent
in SMT solving would be the same, but the wall-clock time would be less).

max: 0.93×/1.3×/4.1×) over the interpret-eager mode. This section omits results for the scuba

points-to analysis case study, where eager evaluation is not remotely competitive with our initial

compiler to off-the-shelf Soufflé. The scuba case study uses little SMT solving and is most similar

to traditional Datalog workloads; additionally, eager evaluation reorders rules so that 𝛿-predicates

come first, which happens to be a very inefficient join ordering strategy here.

Eager evaluation uses more memory than semi-naive evaluation: interpret-eager uses mean 1.6×
as much memory as the baseline interpreter (“interpret”) (min/median/max: 0.96×/1.1×/5.2×);
compile-eager uses mean 1.1× as much memory as compile (min/median/max: 0.92×/1.1×/1.5×).

Eager evaluation’s approach to parallelism is finer-grained than the parallel for loops of typical

implementations of semi-naive evaluation, and in general the eager evaluation modes demonstrate

higher CPU utilization in our experiments (albeit with some variability). Interpret-eager uses mean

3.9× as many CPUs as interpret (min/median/max: 0.93×/1.9×/12×); compile-eager uses mean

1.6× as many CPUs as compile (min/median/max: 0.19×/1.1×/7.1×).
We also measured the amount of “work” performed by each strategy. We define this quantity as

the number of tuple accesses made during the evaluation of a rule; if evaluation takes the form of

a nested for loop where loops iterate over relation contents, it is the total number of iterations

across all loops. Given a fixed program and input, semi-naive evaluation will always perform the

same amount of work (which will, in general, contain some redundant combinations of tuples).

Not so for eager evaluation, where the outcome of data races can lead to a different amount of

work being performed (which might happen to be more or less than the work done by semi-naive

evaluation). In our experiments, interpret and interpret-eager do almost exactly the same amount

of work, but compile does slightly more work (1.1-1.2×) than compile-eager.
9

9
For the dminor and symex case studies, interpret and compile modes both use a 𝛿-predicate-first heuristic for reordering

atoms in rule bodies, as that ordering is more efficient on these benchmarks than the default left-to-right order. Since this is

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 314. Publication date: October 2024.

Making Formulog Fast: An Argument for Unconventional Datalog Evaluation 314:21

5.3.2 Refinement Type Checking (dminor). Interpret-eager has a mean 1.3× speedup (min/median

/max: 1.1×/1.3×/1.7×) over compile on the dminor case study, while compile-eager has a mean

2.8× speedup (min/median/max: 1.3×/3.0×/4.1×) over interpret-eager.
Eager evaluation is not universally more effective than compile at grouping similar SMT calls

on the same thread: compile has mean 1.2× (min/median/max: 0.97×/1.2×/1.3×) as many SMT

cache misses as interpret-eager, but 0.94× (min /median /max: 0.80×/ 1.0×/ 1.0×) as many as

compile-eager.
10
This suggests that SMT calls in this case study do not follow the pattern identified

in Section 4. Despite this, eager evaluation can still lead to better SMT solving CPU times than

compile: SMT solving can be up to 1.2× faster with both interpret-eager and compile-eager. Thus,

eager evaluation leads to an advantageous distribution of the SMT workload, despite taking less

advantage of SMT caching. This perhaps reflects the difficulty of predicting SMT solver performance,

which can vary widely with small perturbations to solver state and query framing (e.g., the choice of

SMT variable names can affect how long solving takes and whether the result is sat or unknown11).

5.3.3 Symbolic Execution (symex). Interpret-eager achieves a mean 6.3× speedup (min/median/
max: 0.4×/1.1×/31×) over compile on the symex benchmarks, while compile-eager manages a

1.5× speedup (min/median/max: 0.9×/1.2×/3.5×) over interpret-eager.
The SMT story is more straightforward for this case study: eager evaluation more effectively

groups together similar SMT calls on the same thread, and this leads to faster SMT solving times. In

particular, compile has mean 2.5× (min/median/max: 0.34×/1.4×/5.7×) as many SMT cache misses

as interpret-eager and mean 5.7× (min/median/max: 0.3×/3.6×/18×) as many as compile-eager.

In terms of CPU time spent SMT solving, this gives a mean speedup of 1.4× over compile for both

interpret-eager (min/median/max: 0.28×/1.5×/2.7×) and compile-eager (min/median/max:

0.24×/1.6×/2.8×). Thus, as anticipated in Section 4, symbolic execution discharges SMT queries in

a pattern well matched to eager evaluation.

5.3.4 Scaling. We also tested how well eager evaluation and semi-naive evaluation scale as the

number of threads is varied. We ran the compile and compile-eager modes on six benchmarks: the

longest-running dminor benchmark (all-100), and the longest-running configuration of each of the

five template symex benchmarks (interp-6, numbrix-sat, prioqueue-6, shuffle-5, and sort-7).
12
We

varied the number of threads between 1, 8, 16, 24, 32, 40, and 48, with five trials per configuration.

These experiments were run on an Ubuntu 22.04 c5.12xlarge Amazon Web Services EC2 with an

Intel Xeon processor clocked at 3.6GHz, 24 physical cores (48 vCPUs), and 96GiB RAM.

At the baseline of using a single thread, compile-eager outperforms compile by a mean speedup

of 1.7× (min/median/max: 0.9×/1.2×/4.3×). This speedup is slightly less than the mean 2.1×
speedup compile-eager has over compile in terms of SMT solving times (min/median/max: 0.9×/
1.5×/5.2×), an indication of the overhead of eager evaluation relative to semi-naive evaluation.

On most benchmarks, compile-eager scales better than semi-naive evaluation, achieving higher

speedups over single-threaded evaluation as the number of threads is varied (Figure 7). Compile-

eager is typically able to more fully take advantage of additional threads, achieving higher speedups

than compile for a given thread count, and continuing to get performance improvements past

consistent with the atom ordering used by eager evaluation, comparing the amount of work done by semi-naive and eager

modes is apples-to-apples (in general, the amount of work done in a rule depends on the order of body atoms).

10
The Formulog runtime uses encoding tricks to maintain a per-solver cache of conjuncts [Bembenek et al. 2020a]; we count

an SMT cache miss for each relevant conjunct that is not in the cache when an SMT call is made.

11
See https://github.com/Z3Prover/z3/issues/909/ and https://github.com/Z3Prover/z3/issues/4600.

12
We omit the interpreted Formulog modes on the basis that they are less optimized than the compiled modes, and so how

well they scale is a less interesting question.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 314. Publication date: October 2024.

https://github.com/Z3Prover/z3/issues/909/
https://github.com/Z3Prover/z3/issues/4600

314:22 Aaron Bembenek, Michael Greenberg, and Stephen Chong

1 8 16 24 32 40 48

threads

0

5

10

15

20

S
p

ee
d

u
p

o
ve

r
si

n
g

le
th

re
ad

(×
)

compile

1 8 16 24 32 40 48

threads

compile-eager

Benchmark

all-100

interp-6

numbrix-sat

prioqueue-6

shuffle-5

sort-7

Fig. 7. Eager evaluation typically takes better advantage of additional threads than semi-naive evaluation,
achieving higher speedups (relative to single-threaded evaluation) for a given thread count, and continuing to
improve performance past the thread count where semi-naive evaluation’s performance stalls or decreases.

the thread count where compile’s performance begins to stall or decrease. Nonetheless, most of

compile-eager’s performance is achieved by 32 threads, with diminishing returns beyond that point.

Two benchmarks are outliers to the general trend. First, single-threaded evaluation is best for

both evaluation modes on the symex benchmark numbrix-sat, which has a single possible program

path: additional threads lead to more overhead, with no performance gain (there are no branches

for symbolic execution to explore in parallel). Second, on the symex benchmark sort-7, compile

achieves higher speedups than compile-eager. On this benchmark, compile-eager’s SMT solving

CPU times are about twice as fast as compile’s; nonetheless, its overall times are slightly slower.

This benchmark generates many (28 million) derived tuples, and it could be that eager evaluation’s

approach of generating one work item per tuple introduces too much overhead. This result suggests

the potential of a hybrid evaluation scheme that uses some amount of batching to reduce overhead,

while still achieving better SMT solver locality than semi-naive evaluation.

6 Formulog Performance: Present and Future
This section first contextualizes the performance of new-and-improved Formulog relative to non-

Datalog reference implementations (Section 6.1), and then proposes future directions (Section 6.2).

6.1 Putting Formulog’s Performance in Context
In the original Formulog paper, Bembenek et al. [2020b] compare the performance of Formulog

to reference implementations that perform analyses similar to the case studies, but are written

in traditional languages (F
♯
, Java, and C++). While these comparisons are not apples-to-apples

(implementations might use different heuristics, SMT encodings, etc.), they do provide wider

context for Formulog’s performance. How does Formulog stack up now given compilation and eager

evaluation? The numbers are promising: our performance improvements to Formulog substantially

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 314. Publication date: October 2024.

Making Formulog Fast: An Argument for Unconventional Datalog Evaluation 314:23

Table 2. On 22/23 benchmarks, a compiled Formulog mode beats any Formulog interpreter mode; on 20/23
benchmarks, some Formulog mode beats the non-Datalog reference implementation (see Section 6.1; for the
symex case study, we compare against KLEE [Cadar et al. 2008]). The best Formulog time on a benchmark
is italicized ; the best overall time for a benchmark is in bold. Timeouts were 30 minutes. In the case that a
Formulog configuration timed out on its first trial, we did not run additional trials. SMT-heavy case studies
are shaded gray .

Formulog interp. (s) Formulog compile (s) Reference

Case study Benchmark semi-naive eager semi-naive eager impl. (s)

dminor all-1 4.76 2.46 4.10 0.60 1.50

dminor all-10 17.05 4.19 5.38 1.40 68.00

dminor all-100 128.00 94.56 102.02 74.05 TO

scuba antlr 310.38 TO 93.89 1015.10 95.11

scuba avrora 387.19 TO 137.79 TO 85.16
scuba hedc 249.55 TO 65.00 272.36 81.01

scuba hsqldb 244.84 TO 64.38 431.53 68.37

scuba luindex 1338.49 TO 1045.64 TO error

scuba polyglot 243.34 1246.84 56.66 164.78 75.15

scuba sunflow 1041.81 TO 495.98 TO 279.81
scuba toba-s 257.02 TO 75.21 312.01 76.63

scuba weblech 286.23 TO 77.66 799.52 97.22

scuba xalan 285.88 TO 84.56 1057.24 72.64
symex interp-5 117.64 6.80 121.24 4.18 46.81

symex interp-6 541.73 16.93 523.55 14.23 176.50

symex numbrix-sat 19.84 28.72 11.87 26.79 302.25

symex numbrix-unsat 16.79 23.02 10.13 22.84 160.03

symex prioqueue-5 39.72 7.89 39.81 5.33 41.11

symex prioqueue-6 128.35 24.48 114.72 19.91 199.34

symex shuffle-4 3.06 2.25 1.62 0.64 49.80

symex shuffle-5 6.30 3.79 4.46 2.06 TO

symex sort-6 15.04 9.62 10.80 9.11 140.20

symex sort-7 112.56 76.25 76.77 82.02 1607.07

close the gap in cases where Formulog previously significantly trailed the reference implementations,

and translate to increased speedups over the reference implementations in other cases (Table 2).

Except for the Dminor reference implementation, we ran the reference implementations on an

m5.12xlarge AWS EC2 instance, using the same version of Z3 as in our Formulog experiments. The

Dminor reference implementation can run only on an old version of the .NET platform, constrained

both in terms of available memory and available Z3 versions; instead of running the Dminor

reference implementation again, we use the numbers provided by Bembenek et al. [2020b].

Refinement Type Checking (dminor). The dminor case study has three benchmarks, consisting,

respectively, of one, 10, and 100 copies of the same skeleton Dminor program𝐷𝑎𝑙𝑙 (a composite of all

publicly available Dminor programs that use only the core feature set). The reference type checker

of Bierman et al. [2012] is written in F
♯
and uses an optimization not implemented in the Formulog

version; nonetheless, Formulog compile-eager consistently beats it. The reference implementation

takes 1.5 seconds to type check one copy of 𝐷𝑎𝑙𝑙 ; in interpret mode, Formulog takes 4.8 seconds; in

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 314. Publication date: October 2024.

314:24 Aaron Bembenek, Michael Greenberg, and Stephen Chong

compile-eager mode, it takes 0.61 seconds. For the 10-copy version, the reference implementation

takes 68 seconds, Formulog interpret takes 17 seconds, and Formulog compile-eager takes 1.4

seconds. The Formulog versions scale to type checking 100 copies of 𝐷𝑎𝑙𝑙 (interpret: 128 seconds;

compile-eager: 74 seconds); the reference implementation does not, timing out after 100 minutes

(perhaps hamstrung by the old .NET platform it runs on).

Bottom-Up Points-To Analysis (scuba). The reference implementation of Feng et al. [2015], written

in Java, achieves a mean 3.5× speedup over Formulog interpret (min/median/max: 2.9×/3.4×/4.5×)
on nine substantial Java benchmarks.

13
By compiling the Formulog version to Soufflé, we reduce

this speedup to mean 1.1× (min/median/max: 0.75×/0.98×/1.8×); that is, Formulog compile

performs essentially on par with the reference implementation. The Formulog version closely

follows the mathematical specification of the analysis, while integrating some of the heuristics used

in the reference implementation, which is significantly more complex (and 10× larger in SLOC).

Symbolic Execution (symex). We compare against the symbolic executor KLEE (v3.0, released

June 2023) [Cadar et al. 2008], set to analyze LLVM 13.0 bitcode (the Formulog-based bounded

symbolic executor analyzes LLVM 7.0 bitcode). Formulog interpret achieves a mean 35× speedup

over KLEE (min/median/max: 0.33×/9.4×/290×), an improved performance compared to the

numbers reported in the original Formulog paper. Formulog compile-eager boosts this speedup

up to mean 100× (min/median/max: 7.0×/12×/870×). These numbers should be taken with a

grain of salt: the Formulog-based symbolic executor only handles a small subset of LLVM, whereas

KLEE is an industrial-strength tool. Although it implements a different analysis—C bounded model

checking instead of LLVM symbolic execution—for the sake of completeness we also compare

against the tool CBMC (v5.85.0, released June 2023) [Clarke et al. 2004]: it achieves a mean 200×
speedup over Formulog compile-eager (min/median/max: 0.26×/9.2×/890×). We explicitly set

the number of times to unwind loops on two benchmarks to force CBMC to complete.

Discussion. The performance improvements developed in this paper were enabled by Formulog’s

high-level design, a central desideratum being that additional features—functional programming,

SMT solving, and relation reification—should not get in the way of evaluating and optimizing

Formulog programs just as if they were Datalog programs. First, this allows a direct translation

from Formulog to a high-performance Datalog platform, Soufflé. In the future, we could translate

to different Datalog engines (e.g., Differential Datalog [Ryzhyk and Budiu 2019]), as long as they

have an FFI and provide some control over the order in which predicates in a rule are evaluated

(well typedness in Formulog depends on predicate order; our implementations of eager evaluation

account for this). Second, it means that we can develop new Formulog evaluation algorithms by

developing new Datalog evaluation strategies; e.g., by developing eager Datalog evaluation, we

get eager Formulog evaluation. Compared to designing Formulog evaluation algorithms directly,

this has the advantage that Datalog has fewer moving parts (and is thus easier to reason about)

and is extensively studied. It also enabled us to relatively easily add eager evaluation to Soufflé, as

we were able to reuse much of the Soufflé codebase, and did not have to make Soufflé aware of

Formulog semantics.

13
We omit the benchmark luindex, on which the reference implementation of Feng et al. [2015] fails with an out-of-bounds

access. Bembenek et al. [2020b] report that the reference implementation completes on this benchmark in 100 seconds. The

experimental setups differ in the implementation of the JDK 7 that is analyzed as part of the points-to analyses; we believe

this leads to the discrepancy here.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 314. Publication date: October 2024.

Making Formulog Fast: An Argument for Unconventional Datalog Evaluation 314:25

6.2 Future Directions
Hybrid Evaluation Schemes. There is a spectrum between semi-naive and eager evaluation

strategies. On the one hand, it is possible to make eager evaluation a little less eager by introducing

some degree of batching; for example, the facts derived during the evaluation of a rule could always

be grouped together into fixed-size batches. On the other hand, it is also possible to use eager

evaluation and semi-naive evaluation within the same program; for instance, eager evaluation

could be used for Formulog strata that contain SMT calls, and semi-naive evaluation could be used

elsewhere. Furthermore, although it would require a bit more coordination, eager and semi-naive

evaluation can be combined in the same stratum, so that different approaches are used for different

rules. Hybrid evaluation schemes would be particularly relevant when integrating a component

written in Formulog (and compiled to Soufflé) into an existing Soufflé project: one might want to

use eager evaluation just for the Formulog part, and semi-naive evaluation everywhere else.

More Sophisticated Distribution of SMT Queries. Formulog currently associates a single SMT solver

with each Datalog evaluation thread, and discharges all SMT queries arising on that thread to that

solver. This tightly binds the distribution of SMT queries across SMT solvers to the distribution of

inference tasks across Datalog evaluation threads. While this makes it possible to achieve more

favorable distributions of the SMT workload just by changing the Datalog evaluation algorithm (viz.

eager evaluation), it is also a limitation, as it rules out other possible ways of distributing the SMT

workload. For example, one could imagine having a shared pool of SMT solvers: each Datalog worker

thread submits queries to the pool, and the pool decides the “best” solver to run it on (perhaps based

on the state of the solver, or some characteristic of the query). The pool might choose to allocate

multiple cores/solvers to particularly “hard” queries using a portfolio approach [Wintersteiger

et al. 2009]. However, even with more sophisticated schemes for distributing SMT queries, eager

evaluation would still be useful, since it is ultimately the Datalog evaluation strategy that determines

the order in which SMT queries are produced.

Applying Eager Evaluation Beyond Formulog. Eager evaluation’s DFS of the logical inference

space could be beneficial to Datalog systems (beyond Formulog) that interact with stateful external

systemswhose performance depends on the distribution and order of queries. That interactionmight

be through a general foreign function interface or via specialized, built-in support. For example,

Soufflé supports relations stored in external SQLite databases. The current implementation of Soufflé

eagerly reads the entire relation into memory during initialization, but an alternate implementation

might read only a slice of the database relation into memory at any one time (e.g., if the relation is

too large to fit into memory); in this case, performance depends on the temporal and spatial locality

of database queries. Another example is Vieira [Li et al. 2024], a probabilistic variant of Datalog

with built-in predicates that discharge queries to external foundation models. Vieira currently

interacts with foundation models using only one-off (context-free) calls; in an alternate model

of neurosymbolic programming, Vieira could use stateful APIs for foundation models (such as

OpenAI’s Assistants API
14
) so that each foundation model query is part of the same conversation.

In this case, the way a foundation model answers a question would depend on the flow of the

conversation up to that point—a function of how the Datalog inference space has been explored.

7 Related Work
Pipelined Semi-Naive Evaluation. Eager evaluation is similar in spirit to pipelined semi-naive

evaluation (PSN), introduced by Loo et al. [2006] for Datalog-based declarative networking. Eager

evaluation and PSN are both worklist-based algorithms that evaluate rules using one “delta” tuple

14
https://platform.openai.com/docs/assistants/overview

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 314. Publication date: October 2024.

https://platform.openai.com/docs/assistants/overview

314:26 Aaron Bembenek, Michael Greenberg, and Stephen Chong

at a time. However, PSN is designed for a distributed, multi-node setting, whereas eager evaluation

is designed for a single-node, multi-threaded setting. Despite its distributed setting, PSN is crafted

so that rule evaluation is localized, making it easy to prove the algorithm’s completeness; in

contrast, eager evaluation does not restrict which thread a computation is performed on, leading to

data races and a subtle completeness argument. PSN timestamps facts to avoid doing redundant

work compared to traditional semi-naive evaluation; eager evaluation could do something similar,

although we suspect this would lead to unacceptable overhead on the workloads Formulog targets.

Executing Datalog Variants. Non-distributed Datalog variants typically strive to work with

semi-naive evaluation [Arntzenius and Krishnaswami 2020; Bembenek et al. 2020b; Madsen et al.

2016; Sahebolamri et al. 2023, 2022; Szabó et al. 2021]. Because semi-naive evaluation is the most

widely used evaluation strategy for Datalog, being able to support semi-naive evaluation is seen

as validating the practicality of the variant (e.g., there is an entire POPL paper on semi-naive

evaluation for Datafun [Arntzenius and Krishnaswami 2020]). Our work demonstrates that, even

in a single-node setting, semi-naive evaluation is not the optimal evaluation strategy for every

Datalog variant.

Traversal Orders in Logic Programming. We are not aware of prior work that performs a DFS of

the logical inference space during bottom-up evaluation (except for PSN [Loo et al. 2006], which

has this capability). However, top-down logic programming systems like Prolog typically explore

SLD resolution trees using DFS [Gallier 1986]. Top-down evaluation proceeds from the head of

a rule to the body—i.e., starts with a conclusion, and then searches for a justification. Bottom-up

evaluation works the opposite way by combining known facts to make new inferences. Given a

query to prove, the magic set transformation [Bancilhon et al. 1985; Beeri and Ramakrishnan 1991]

rewrites a logic program so that bottom-up evaluation derives only facts relevant to proving that

query (simulating top-down evaluation); while this limits which logical inferences are made, those

inferences are still made in a breadth-first order (assuming traditional semi-naive evaluation). In

principle, bottom-up evaluation algorithms could pursue traversals through the logical inference

space different from breadth-first and depth-first search. For example, an evaluation strategy that

assigns a priority to each derived fact, and processes facts in this order, could be used to guide

potentially non-terminating computations—like unbounded symbolic execution [Cadar et al. 2008]

or enumerative program synthesis [Alur et al. 2013]—towards fruitful directions.

Datalog Compilation. Compilation is a popular strategy for speeding up Datalog and its variants.

Soufflé [Jordan et al. 2016; Scholz et al. 2016] spearheaded this approach by compiling Datalog to

an abstract instruction set that is then compiled to C++. The Flix implementation [Madsen et al.

2022] compiles Horn clauses to an abstract machine; Differential Datalog [Ryzhyk and Budiu 2019],

Crepe [Zhang 2020], and Ascent [Sahebolamri et al. 2022] compile them to Rust (the latter two

using macro-based approaches). Pacak and Erdweg [2022] compile Functional IncA—a functional

language interpreted under a non-standard, fixpoint semantics—to Datalog. Our approach (Section 3)

is hybrid, as we compile Formulog Horn clauses to traditional Datalog, but Formulog functional

code directly to C++. Flan [Abeysinghe et al. 2024] is a new compilation framework for Datalog

that leverages Lightweight Modular Staging [Rompf and Odersky 2010] to flexibly produce high

performing code. As future work, the Flan authors suggest using Flan to construct something akin

to a “compiled Formulog.” We are excited about this direction, as Flan’s flexibility would make it

easier to combine Formulog with additional language features (like lattices). Our work suggests that

Flan would need to support eager evaluation to achieve top performance on SMT-heavy workloads.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 314. Publication date: October 2024.

Making Formulog Fast: An Argument for Unconventional Datalog Evaluation 314:27

8 Summary
This paper has explored both off-the-shelf technologies and custom techniques to speed up Formu-

log, a domain-specific language that combines Datalog, SMT solving, and functional programming.

Compiling to off-the-shelf Soufflé provides solid (mean 2.2×) speedups; an additional advantage

comes via eager evaluation, a novel strategy that structures Datalog evaluation as a worklist algo-

rithm and achieves a quasi-depth-first search through the logical inference space by submitting

inference tasks to a work-stealing thread pool. The key insight is that, for Formulog, the order in

which you explore logical inferences matters, because different orders lead to different distribu-

tions of the SMT workload across threads. On SMT-heavy workloads, eager evaluation extensions

to the Formulog interpreter and Soufflé’s code generator achieve mean 5.2× and 7.6× speedups,

respectively, over off-the-shelf Soufflé. Our performance improvements to Formulog help make

Formulog-based analyses competitive with previously published, non-Datalog analysis implemen-

tations, achieving faster times on 20 out of 23 benchmarks. Our results provide strong evidence

that Formulog can be a realistic platform for SMT-based static analysis, and also add some nuance

to the conventional wisdom that fast Datalog evaluation depends on semi-naive evaluation.

Data-Availability Statement
An artifact supporting the results of this paper is available on Zenodo [Bembenek et al. 2024b].

It includes our extensions to Formulog and Soufflé, the benchmarks we use, the data from our

experiments, benchmarking and data-processing scripts, and documentation on how to build on

top of our software. Additionally, Formulog is available at https://github.com/HarvardPL/formulog.

Acknowledgments
We thank Eric Zhang for his contributions to a preliminary implementation of the Formulog-to-

Soufflé compiler; we still use some of the code he wrote. We thank Eddie Kohler and the anonymous

reviewers for helpful feedback on earlier versions of this paper. We also belatedly thank Yu Feng

and Xinyu Wang for answering our questions about Scuba and giving us access to the reference

Scuba implementation when we were writing the original Formulog paper (their assistance was

mistakenly omitted from that paper’s acknowledgments).

References
SupunAbeysinghe, Anxhelo Xhebraj, and Tiark Rompf. 2024. Flan: An Expressive and Efficient Datalog Compiler for Program

Analysis. Proceedings of the ACM on Programming Languages 8, POPL (2024), 2577–2609. https://doi.org/10.1145/3632928

Alex Aiken, Suhabe Bugrara, Isil Dillig, Thomas Dillig, Brian Hackett, and Peter Hawkins. 2007. An Overview of the

Saturn Project. In Proceedings of the 7th ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for Software Tools and
Engineering. 43–48. https://doi.org/10.1145/1251535.1251543

Rajeev Alur, Rastislav Bodík, Garvit Juniwal, Milo M. K. Martin, Mukund Raghothaman, Sanjit A. Seshia, Rishabh Singh,

Armando Solar-Lezama, Emina Torlak, and Abhishek Udupa. 2013. Syntax-guided synthesis. In 2013 Formal Methods in
Computer-Aided Design. 1–8. https://ieeexplore.ieee.org/document/6679385/

Peter Alvaro, Tyson Condie, Neil Conway, Khaled Elmeleegy, Joseph M Hellerstein, and Russell Sears. 2010a. Boom

Analytics: Exploring Data-Centric, Declarative Programming for the Cloud. In Proceedings of the 5th European Conference
on Computer Systems. 223–236. https://doi.org/10.1145/1755913.1755937

Peter Alvaro,William RMarczak, Neil Conway, JosephMHellerstein, DavidMaier, and Russell Sears. 2010b. Dedalus: Datalog

in Time and Space. In Datalog Reloaded - 1st International Workshop. 43–48. https://doi.org/10.1007/978-3-642-24206-9_16
Tony Antoniadis, Konstantinos Triantafyllou, and Yannis Smaragdakis. 2017. Porting Doop to Soufflé: A Tale of Inter-

Engine Portability for Datalog-Based Analyses. In International Workshop on State Of the Art in Program Analysis. 25–30.
https://doi.org/10.1145/3088515.3088522

Krzysztof R Apt, Howard A Blair, and Adrian Walker. 1988. Towards a Theory of Declarative Knowledge. In Foundations of
Deductive Databases and Logic Programming. Elsevier, 89–148. https://doi.org/10.1016/B978-0-934613-40-8.50006-3

Michael Arntzenius and Neel Krishnaswami. 2020. Seminäive Evaluation for a Higher-Order Functional Language. Proceed-
ings of the ACM on Programming Languages 4, POPL (2020), 22:1–22:28. https://doi.org/10.1145/3371090

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 314. Publication date: October 2024.

https://github.com/HarvardPL/formulog
https://doi.org/10.1145/3632928
https://doi.org/10.1145/1251535.1251543
https://ieeexplore.ieee.org/document/6679385/
https://doi.org/10.1145/1755913.1755937
https://doi.org/10.1007/978-3-642-24206-9_16
https://doi.org/10.1145/3088515.3088522
https://doi.org/10.1016/B978-0-934613-40-8.50006-3
https://doi.org/10.1145/3371090

314:28 Aaron Bembenek, Michael Greenberg, and Stephen Chong

Nimar S Arora, Robert D Blumofe, and C Greg Plaxton. 1998. Thread Scheduling for Multiprogrammed Multiprocessors. In

Proceedings of the Tenth Annual ACM Symposium on Parallel Algorithms and Architectures. 119–129.
Francois Bancilhon. 1986. Naive Evaluation of Recursively Defined Relations. In On Knowledge Base Management Systems.

Springer, 165–178. https://doi.org/10.1007/978-1-4612-4980-1_17

Francois Bancilhon, David Maier, Yehoshua Sagiv, and Jeffrey D Ullman. 1985. Magic Sets and Other Strange Ways to

Implement Logic Programs. In Proceedings of the 5th ACM SIGACT-SIGMOD Symposium on Principles of Database Systems.
1–15. https://doi.org/10.1145/6012.15399

Clark Barrett, Pascal Fontaine, and Cesare Tinelli. 2016. The Satisfiability Modulo Theories Library (SMT-LIB). www.SMT-

LIB.org.

Catriel Beeri and Raghu Ramakrishnan. 1991. On the Power of Magic. The Journal of Logic Programming 10, 3-4 (1991),

255–299. https://doi.org/10.1016/0743-1066(91)90038-Q

Aaron Bembenek, Michael Ballantyne, Michael Greenberg, and Nada Amin. 2020a. Datalog-Based Systems Can Use Incre-

mental SMT Solving. In Proceedings of the 36th International Conference Logic Programming (Technical Communications).
Aaron Bembenek, Michael Greenberg, and Stephen Chong. 2020b. Formulog: Datalog for SMT-Based Static Analysis.

Proceedings of the ACM on Programming Languages 4, OOPSLA (2020), 141:1–141:31. https://doi.org/10.1145/3428209

Aaron Bembenek, Michael Greenberg, and Stephen Chong. 2024a. Making Formulog Fast: An Argument for Unconventional

Datalog Evaluation (Extended Version). arXiv:2408.14017 [cs.PL]

Aaron Bembenek, Michael Greenberg, and Stephen Chong. 2024b. Making Formulog Fast: An Argument for Unconventional
Datalog Evaluation (OOPSLA’24 Artifact). https://doi.org/10.5281/zenodo.13372573

Gavin M. Bierman, Andrew D. Gordon, Cătălin Hriţcu, and David Langworthy. 2012. Semantic Subtyping with an SMT

Solver. Journal of Functional Programming 22, 1 (2012), 31–105. https://doi.org/10.1145/1863543.1863560

Stephen M. Blackburn, Robin Garner, Chris Hoffmann, Asjad M. Khang, Kathryn S. McKinley, Rotem Bentzur, Amer

Diwan, Daniel Feinberg, Daniel Frampton, Samuel Z. Guyer, Martin Hirzel, Antony Hosking, Maria Jump, Han Lee,

J. Eliot B. Moss, Aashish Phansalkar, Darko Stefanović, Thomas VanDrunen, Daniel von Dincklage, and Ben Wiedermann.

2006. The DaCapo Benchmarks: Java Benchmarking Development and Analysis. In Proceedings of the 21st Annual
ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and Applications. 169–190. https:

//doi.org/10.1145/1167473.1167488

Robert D Blumofe and Charles E Leiserson. 1999. Scheduling multithreaded computations by work stealing. Journal of the
ACM (JACM) 46, 5 (1999), 720–748.

Martin Bravenboer and Yannis Smaragdakis. 2009. Strictly Declarative Specification of Sophisticated Points-to Analyses.

In Proceedings of the 24th Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and
Applications. 243–262. https://doi.org/10.1145/1639949.1640108

Cristian Cadar, Daniel Dunbar, and Dawson Engler. 2008. KLEE: Unassisted and Automatic Generation of High-Coverage

Tests for Complex Systems Programs. In Proceedings of the 8th USENIX Conference on Operating Systems Design and
Implementation. 209–224.

Stefano Ceri, Georg Gottlob, and Letizia Tanca. 1989. What You Always Wanted to Know About Datalog (and Never Dared

to Ask). IEEE Transactions on Knowledge and Data Engineering 1, 1 (1989), 146–166.

Keith L Clark. 1977. Negation as Failure. In Logic and Data Bases. 293–322. https://doi.org/10.1007/978-1-4684-3384-5_11

Edmund Clarke, Daniel Kroening, and Flavio Lerda. 2004. A Tool for Checking ANSI-C Programs. In Proceedings of the
10th International Conference on Tools and Algorithms for the Construction and Analysis of Systems. 168–176. https:

//doi.org/10.1007/978-3-540-24730-2_15

Leonardo Dagum and Ramesh Menon. 1998. OpenMP: an industry standard API for shared-memory programming. IEEE
Computational Science & Engineering 5, 1 (1998), 46–55.

Leonardo de Moura and Nikolaj Bjørner. 2008. Z3: An Efficient SMT Solver. In Proceedings of the 14th International Conference
on Tools and Algorithms for the Construction and Analysis of Systems. 337–340. https://doi.org/10.1007/978-3-540-78800-

3_24

Leonardo de Moura and Nikolaj Bjørner. 2011. Satisfiability modulo Theories: Introduction and Applications. Commun.
ACM 54, 9 (2011), 69–77. https://doi.org/10.1145/1995376.1995394

Daniel J Dougherty, Kathi Fisler, and Shriram Krishnamurthi. 2006. Specifying and reasoning about dynamic access-

control policies. In Proceedings of the 3rd International Joint Conference on Automated Reasoning. 632–646. https:

//doi.org/10.1007/11814771_51

Niklas Eén and Niklas Sörensson. 2003. Temporal Induction by Incremental SAT Solving. Electronic Notes in Theoretical
Computer Science 89, 4 (2003), 543–560. https://doi.org/10.1016/s1571-0661(05)82542-3

Zhiwei Fan, Jianqiao Zhu, Zuyu Zhang, Aws Albarghouthi, Paraschos Koutris, and Jignesh M. Patel. 2019. Scaling-up

in-Memory Datalog Processing: Observations and Techniques. Proceedings of the VLDB Endowment 12, 6 (feb 2019),

695–708. https://doi.org/10.14778/3311880.3311886

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 314. Publication date: October 2024.

https://doi.org/10.1007/978-1-4612-4980-1_17
https://doi.org/10.1145/6012.15399
www.SMT-LIB.org
www.SMT-LIB.org
https://doi.org/10.1016/0743-1066(91)90038-Q
https://doi.org/10.1145/3428209
https://arxiv.org/abs/2408.14017
https://doi.org/10.5281/zenodo.13372573
https://doi.org/10.1145/1863543.1863560
https://doi.org/10.1145/1167473.1167488
https://doi.org/10.1145/1167473.1167488
https://doi.org/10.1145/1639949.1640108
https://doi.org/10.1007/978-1-4684-3384-5_11
https://doi.org/10.1007/978-3-540-24730-2_15
https://doi.org/10.1007/978-3-540-24730-2_15
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1145/1995376.1995394
https://doi.org/10.1007/11814771_51
https://doi.org/10.1007/11814771_51
https://doi.org/10.1016/s1571-0661(05)82542-3
https://doi.org/10.14778/3311880.3311886

Making Formulog Fast: An Argument for Unconventional Datalog Evaluation 314:29

Yu Feng, Xinyu Wang, Isil Dillig, and Thomas Dillig. 2015. Bottom-up Context-Sensitive Pointer Analysis for Java. In

Proceedings of the 13th Asian Symposium on Programming Languages and Systems. 465–484. https://doi.org/10.1007/978-

3-319-26529-2_25

Antonio Flores-Montoya and Eric M. Schulte. 2020. Datalog Disassembly. In Proceedings of the 29th USENIX Security
Symposium. 1075–1092.

Hervé Gallaire and Jack Minker (Eds.). 1978. Logic and Data Bases. Plenum Press.

Jean Gallier. 1986. Logic for Computer Science: Foundations of Automated Theorem Proving. Wiley, Chapter 9.

Michael Gelfond and Vladimir Lifschitz. 1988. The Stable Model Semantics for Logic Programming. In Proceedings of the 5th
International Conference and Symposium on Logic Programming.

Neville Grech, Lexi Brent, Bernhard Scholz, and Yannis Smaragdakis. 2019. Gigahorse: Thorough, Declarative Decompilation

of Smart Contracts. In Proceedings of the 41st International Conference on Software Engineering. 1176–1186. https:

//doi.org/10.1109/ICSE.2019.00120

Neville Grech, Michael Kong, Anton Jurisevic, Lexi Brent, Bernhard Scholz, and Yannis Smaragdakis. 2018. Madmax:

Surviving Out-of-Gas Conditions in Ethereum Smart Contracts. Proceedings of the ACM on Programming Languages 2,
OOPSLA (2018), 116:1–116:27. https://doi.org/10.1145/3276486

Todd J. Green, Shan Shan Huang, Boon Thau Loo, and Wenchao Zhou. 2013. Datalog and Recursive Query Processing.

Foundations & Trends in Databases (2013). https://doi.org/10.1561/1900000017

Maurice Herlihy and Jeannette M. Wing. 1990. Linearizability: A Correctness Condition for Concurrent Objects. ACM
Transactions on Programming Languages and Systems 12, 3 (1990), 463–492. https://doi.org/10.1145/78969.78972

Jiani Huang, Ziyang Li, Binghong Chen, Karan Samel, Mayur Naik, Le Song, and Xujie Si. 2021. Scallop: From Probabilistic

Deductive Databases to Scalable Differentiable Reasoning. In Advances in Neural Information Processing Systems. 25134–
25145.

Herbert Jordan, Bernhard Scholz, and Pavle Subotić. 2016. Soufflé: On Synthesis of Program Analyzers. In Computer Aided
Verification. https://doi.org/10.1007/978-3-319-41540-6_23

Herbert Jordan, Pavle Subotić, David Zhao, and Bernhard Scholz. 2019a. Brie: A specialized trie for concurrent Datalog. In

Proceedings of the 10th International Workshop on Programming Models and Applications for Multicores and Manycores.
31–40.

Herbert Jordan, Pavle Subotic, David Zhao, and Bernhard Scholz. 2019b. A Specialized B-tree for Concurrent Datalog

Evaluation. In Proceedings of the 24th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming.
327–339. https://doi.org/10.1145/3293883.3295719

Herbert Jordan, Pavle Subotic, David Zhao, and Bernhard Scholz. 2022. Specializing parallel data structures for Datalog.

Concurrency and Computation: Practice and Experience 34, 2 (2022). https://doi.org/10.1002/CPE.5643

Bas Ketsman and Paraschos Koutris. 2022. Modern Datalog Engines. Foundations and Trends in Databases 12, 1 (2022), 1–68.
https://doi.org/10.1561/1900000073

Ninghui Li and John C Mitchell. 2003. Datalog with Constraints: A Foundation for Trust Management Languages. In

Proceedings of the 5th International Symposium on Practical Aspects of Declarative Languages. 58–73. https://doi.org/10.

1007/3-540-36388-2_6

Ziyang Li, Jiani Huang, Jason Liu, Felix Zhu, Eric Zhao, William Dodds, Neelay Velingker, Rajeev Alur, and Mayur Naik.

2024. Relational Programming with Foundation Models. In AAAI Conference on Artificial Intelligence. 209–214.
Ziyang Li, Jiani Huang, and Mayur Naik. 2023. Scallop: A Language for Neurosymbolic Programming. Proceedings of the

ACM on Programming Languages 7, PLDI (2023), 1463–1487. https://doi.org/10.1145/3591280

Boon Thau Loo, Tyson Condie, Minos Garofalakis, David E. Gay, JosephM. Hellerstein, PetrosManiatis, Raghu Ramakrishnan,

Timothy Roscoe, and Ion Stoica. 2006. Declarative Networking: Language, Execution and Optimization. In Proceedings of
the ACM SIGMOD International Conference on Management of Data. 97–108. https://doi.org/10.1145/1142473.1142485

Magnus Madsen, Jonathan Lindegaard Starup, and Ondřej Lhoták. 2022. Flix: A Meta Programming Language for Datalog.

In Proceedings of the 4th International Workshop on the Resurgence of Datalog in Academia and Industry.
Magnus Madsen, Ming-Ho Yee, and Ondřej Lhoták. 2016. From Datalog to Flix: a Declarative Language for Fixed Points

on Lattices. In Proceedings of the 37th ACM SIGPLAN Conference on Programming Language Design and Implementation.
194–208. https://doi.org/10.1145/2908080.2908096

Eric Mohr, David A Kranz, and Robert H Halstead Jr. 1990. Lazy task creation: A technique for increasing the granularity of

parallel programs. In Proceedings of the 1990 ACM Conference on LISP and Functional Programming. 185–197.
Inderpal Singh Mumick, Hamid Pirahesh, and Raghu Ramakrishnan. 1990. The Magic of Duplicates and Aggregates. In

Proceedings of the 16th International Conference on Very Large Data Bases. 264–277.
André Pacak and Sebastian Erdweg. 2022. Functional programming with Datalog. In 36th European Conference on Object-

Oriented Programming. 7:1–7:28.
Teodor C Przymusinski. 1988. On the Declarative Semantics of Deductive Databases and Logic Programs. In Foundations of

Deductive Databases and Logic Programming. Elsevier, 193–216. https://doi.org/10.1016/b978-0-934613-40-8.50009-9

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 314. Publication date: October 2024.

https://doi.org/10.1007/978-3-319-26529-2_25
https://doi.org/10.1007/978-3-319-26529-2_25
https://doi.org/10.1109/ICSE.2019.00120
https://doi.org/10.1109/ICSE.2019.00120
https://doi.org/10.1145/3276486
https://doi.org/10.1561/1900000017
https://doi.org/10.1145/78969.78972
https://doi.org/10.1007/978-3-319-41540-6_23
https://doi.org/10.1145/3293883.3295719
https://doi.org/10.1002/CPE.5643
https://doi.org/10.1561/1900000073
https://doi.org/10.1007/3-540-36388-2_6
https://doi.org/10.1007/3-540-36388-2_6
https://doi.org/10.1145/3591280
https://doi.org/10.1145/1142473.1142485
https://doi.org/10.1145/2908080.2908096
https://doi.org/10.1016/b978-0-934613-40-8.50009-9

314:30 Aaron Bembenek, Michael Greenberg, and Stephen Chong

Tiark Rompf and Martin Odersky. 2010. Lightweight Modular Staging: A Pragmatic Approach to Runtime Code Generation

and Compiled DSLs. In International Conference on Generative Programming and Component Engineering. 127–136.
https://doi.org/10.1145/1868294.1868314

Leonid Ryzhyk andMihai Budiu. 2019. Differential Datalog. In Proceedings of the 3rd International Workshop on the Resurgence
of Datalog in Academia and Industry. 56–67.

Arash Sahebolamri, Langston Barrett, Scott Moore, and Kristopher K. Micinski. 2023. Bring Your Own Data Structures to

Datalog. Proceedings of the ACM on Programming Languages 7, OOPSLA2 (2023), 1198–1223. https://doi.org/10.1145/

3622840

Arash Sahebolamri, Thomas Gilray, and Kristopher Micinski. 2022. Seamless deductive inference via macros. In Proceedings
of the 31st ACM SIGPLAN International Conference on Compiler Construction. 77–88.

Bernhard Scholz, Herbert Jordan, Pavle Subotić, and Till Westmann. 2016. On Fast Large-Scale Program Analysis in Datalog.

In Proceedings of the 25th International Conference on Compiler Construction. 196–206. https://doi.org/10.1145/2892208.

2892226

Jiwon Seo, Stephen Guo, and Monica S. Lam. 2013. SociaLite: Datalog Extensions for Efficient Social Network Analysis. In

29th IEEE International Conference on Data Engineering. 278–289. https://doi.org/10.1109/ICDE.2013.6544832

Alexander Shkapsky, Mohan Yang, Matteo Interlandi, Hsuan Chiu, Tyson Condie, and Carlo Zaniolo. 2016. Big Data

Analytics with Datalog Queries on Spark. In Proceedings of the 2016 International Conference on Management of Data.
1135–1149. https://doi.org/10.1145/2882903.2915229

Yannis Smaragdakis, Neville Grech, Sifis Lagouvardos, Konstantinos Triantafyllou, and Ilias Tsatiris. 2021. Symbolic

value-flow static analysis: deep, precise, complete modeling of Ethereum smart contracts. Proceedings of the ACM on
Programming Languages 5, OOPSLA (2021), 1–30.

Pavle Subotić, Herbert Jordan, Lijun Chang, Alan Fekete, and Bernhard Scholz. 2018. Automatic Index Selection for

Large-Scale Datalog Computation. Proceedings of the VLDB Endowment 12, 2 (2018), 141–153.
Tamás Szabó, Gábor Bergmann, Sebastian Erdweg, and Markus Voelter. 2018. Incrementalizing Lattice-Based Program

Analyses in Datalog. Proceedings of the ACM on Programming Languages 2, OOPSLA (2018), 139:1–139:29. https:

//doi.org/10.1145/3276509

Tamás Szabó, Sebastian Erdweg, and Gábor Bergmann. 2021. Incremental whole-program analysis in Datalog with lattices.

In Proceedings of the ACM SIGPLAN International Conference on Programming Language Design and Implementation.
1–15.

Petar Tsankov, Andrei Dan, Dana Drachsler-Cohen, Arthur Gervais, Florian Buenzli, and Martin Vechev. 2018. Securify:

Practical Security Analysis of Smart Contracts. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security. 67–82. https://doi.org/10.1145/3243734.3243780

Allen Van Gelder. 1989. Negation as Failure Using Tight Derivations for General Logic Programs. The Journal of Logic
Programming 6, 1-2 (1989), 109–133. https://doi.org/10.1016/0743-1066(89)90032-0

John Whaley, Dzintars Avots, Michael Carbin, and Monica S. Lam. 2005. Using Datalog with Binary Decision Diagrams for

Program Analysis. In Proceedings of the Third Asian Symposium on Programming Languages and Systems. 97–118.
John Whaley and Monica S. Lam. 2004. Cloning-Based Context-Sensitive Pointer Alias Analysis Using Binary Decision

Diagrams. In Proceedings of the ACM SIGPLAN 2004 Conference on Programming Language Design and Implementation.
131–144. https://doi.org/10.1145/996841.996859

Christoph M. Wintersteiger, Youssef Hamadi, and Leonardo de Moura. 2009. A Concurrent Portfolio Approach to SMT

Solving. In Computer Aided Verification. 715–720.
Eric Zhang. 2020. Crepe. https://github.com/ekzhang/crepe. Accessed: 2023-08-18.

Received 2024-04-03; accepted 2024-08-18

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 314. Publication date: October 2024.

https://doi.org/10.1145/1868294.1868314
https://doi.org/10.1145/3622840
https://doi.org/10.1145/3622840
https://doi.org/10.1145/2892208.2892226
https://doi.org/10.1145/2892208.2892226
https://doi.org/10.1109/ICDE.2013.6544832
https://doi.org/10.1145/2882903.2915229
https://doi.org/10.1145/3276509
https://doi.org/10.1145/3276509
https://doi.org/10.1145/3243734.3243780
https://doi.org/10.1016/0743-1066(89)90032-0
https://doi.org/10.1145/996841.996859
https://github.com/ekzhang/crepe

	Abstract
	1 Introduction
	1.1 Impact Beyond Formulog
	1.2 Contributions

	2 Background
	2.1 Datalog
	2.2 Soufflé
	2.3 Formulog

	3 Compiling Formulog to Soufflé
	3.1 Core Translation
	3.2 Implementation Details
	3.3 Evaluation

	4 Eager Evaluation
	4.1 Motivating Eager Evaluation
	4.2 Eager Evaluation: Parallel, Most-Recent-First Search
	4.3 Correctness of Eager Evaluation

	5 Eager Evaluation in Practice
	5.1 Extending the Formulog Interpreter
	5.2 Extending Soufflé's Code Generator
	5.3 Evaluation

	6 Formulog Performance: Present and Future
	6.1 Putting Formulog's Performance in Context
	6.2 Future Directions

	7 Related Work
	8 Summary
	Acknowledgments
	References

