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Liquid Haskell [7] is a refinement type checker for Haskell programs that can also be used
as a theorem prover to mechanically check user-provided proofs. For example, it has been
used to mechanize proofs about equational reasoning [6], relational properties [5], and program
security [3]. These case studies demonstrate that mechanically checking theorems using Liquid
Haskell is possible, but they illustrate two main disadvantages. First, the foundations of Liquid
Haskell as a theorem prover have neither been well studied nor formalized. Second—and more
pressingly—although Liquid Haskell can check proofs, it does not assist in their development.
That is, when a fully automatic the proof fails, the proof engineer can’t directly inspect the
proof at the point of failure—making it difficult to further develop the proof. We can address
both disadvantages at once by translating Liquid Haskell proofs to Coq. To understand this
translation, we started by encoding the Ackermann function and related arithmetic theorems
in Liquid Haskell and in (to-be-automatically-derived) Coq. In this abstract, we present how
we aim to translate the four main ingredients of Liquid Haskell functions and proofs.

1. Refinement Types =⇒ Subset Types Refinement types are types refined with logical
predicates. For example, Nat

.
= {v : Int | 0 ≤ v} is the type of integers refined to be natural

numbers. Liquid Haskell’s refinements are dependent types: n : Int → {v : Int | n ≤ v} is
the type of a function that increases its integer argument. We could encode refinement types
in Coq two ways: inductive predicates or subset types. While Coq works more easily with
inductive predicates, they are not a good choice for us: they do not permit “breaking the
invariants”. Suppose n : Nat and m : {v : Int | 1 ≤ v}. Refinement types can easily show that
(n−1)+m : Nat, even though n−1 can be negative. In order to separate values and operations
from their properties, we encode refinement types as subset types.

In Coq, an element of the subset type {v : b | p v} is a pair (e, q) of an expression e and a
proof that p e holds. In Liquid Haskell, an element of a subset type is just the expression e.
Our translation’s primary challenge is to fill in the proof terms.

2. Reflection & Termination Metrics =⇒ Equations & Induction Principles Liquid
Haskell uses a termination checker to ensure user defined functions terminate—Liquid Haskell
can only reason safely about terminating functions. When termination is not structurally
obvious, termination metrics let us check semantic termination. For example, the metric /

[m,n] below expresses that ack m n should use lexicographic ordering on its arguments; Liquid
Haskell will check that the metric is well founded.

{-@ ack :: m:Nat -> n:Nat -> Nat / [m,n] @-}

ack 0 n = n + 1

ack m n = if n == 0 then ack (m-1) 1 else ack (m-1) (ack m (n-1))

Terminating functions can be reflected [8] in the refinement logic. The annotation {-@ reflect

ack @-} reflects the Ackermann function, which in practice means that ack can appear in the
refinements and that the logic “knows” the function’s definition—so we can more easily write
and prove theorems about ack. For example, the theorems below state that ack is monotonic;
their (omitted) proofs are Haskell functions that inhabit the types. (The type {p} is really
{v : () | p}, a refinement of unit used as a notion of proposition.)

{-@ monotonic_one :: m:Nat -> n:Nat -> {ack m n < ack m (n+1)} @-}

{-@ monotonic :: m:Nat -> n:Nat -> p:{Nat | p < n } -> {ack m p < ack m n} / [n] @-}

https://github.com/lykmast/coq-refinements/blob/main/lh/Ack.hs
https://github.com/lykmast/coq-refinements/blob/main/theories/Ack.v
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We use Coq’s Equations [4] to define functions that are not obviously terminating. Coq’s
Fixpoint only permits structural induction, while Program Fixpoint provides opaque func-
tions. We use Equations to encode functions like Ackermann’s in Coq, yielding both the
function’s definition and its Equations-generated induction principle.

3. Implicit Semantic Subtyping =⇒ Custom Tactics Liquid Haskell implicitly uses
subtyping to weaken the types of expressions to their appropriate subtypes. Such subtyping
occurs in two program locations: join points and function applications. For example, to type if
p then 2 else 4 as Nat, the singleton branch types {v : Int | v = 2} and {v : Int | v = 4} will
both be weakened to Nat via implicit subtyping. Similarly, typing of f 4, where f : Nat→ Int,
succeeds because of implicit subtyping in the argument.

We created ref tacts, a new suite of tactics, to simulate Liquid Haskell’s implication check-
ing. At join points, we use the my trivial tactic emulates what is trivial for Liquid Haskell’s
logic, including destruction and lia’s arithmetic. At function applications, the reft pose tac-
tic does a bit more: (1) it grabs the function’s preconditions, (2) it proves that the arguments
satisfy them, and, critically (3) it makes the proof term inside the argument opaque so that
it does not clutter the proof environment. Note that functions arguments have correct subset
types—but those types may not be the function’s domain type. Part of reft pose’s job is to
‘upcast’ arguments to satisfy the function domain’s preconditions.

4. SMT & Proof by Logical Evaluation (PLE) =⇒ Sniper How do we define
ref tacts? Liquid Haskell resolves semantic subtyping’s implications by an SMT solver. SMT
solvers know all kinds of things—notably, linear arithmetic. Consider this proof of monotonic:

monotonic m n p | n == p + 1 = monotonic_one m p

| otherwise = ack m p ? monotonic m (n-1) p

=<< ack m (n-1) ? monotonic_one m (n-1)

=<< ack m n *** QED

The goal is to prove that ack m p < ack m n. In the base case, where n == p + 1, the proof
concludes by ack m p < ack m (p+1). In the inductive case, we use Liquid Haskell’s combi-
nators to build the proof. First, we call the inductive hypothesis monotonic m (n-1) p to find
ack m p < ack m (n-1). Next, monotonic one lets us find ack m (n-1) < ack m n. The
proof concludes by linear arithmetic and transitivity of (<), which SMT knows.

Using lia to translate the proof above to Coq is easy. Unfortunately, we must explicitly
use transitivity of <... even though transitivity is ‘free’ in SMT!

Proof translation becomes still more challenging Proof by Logical Evaluation [8] (PLE). PLE
evaluates expressions in the SMT solver itself, substantially shrinking Liquid Haskell proofs—
one need only invoke lemmas. For example, with PLE, the inductive case of monotonic could
be monotonic m (n-1) p ? monotonic one m (n-1). Translating this simpler proof calls
for proof search, since intermediate term for transitivity (ack m (n-1)) has vanished.

Happily, the recently developed Sniper [2] tactic gracefully combines both SMT knowledge
and proof search. Sniper provides general proof automation and combines SMTCoq [1] with
general Coq tactics. We conjecture that sniper would be ideal for our Liquid Haskell to Coq
translation. In order to apply Sniper in our setting, we must extend it to support equations
and subset types that—critical parts of our translation.

Conclusion We aim to translate Liquid Haskell to Coq. Early experiments have produced
workable translations of types, functions, subtyping, and Liquid Haskell’s refinement logic.
Sniper [2] offers a promising way forward, once it can reason properly about subset types.

https://github.com/lykmast/coq-refinements/blob/main/theories/Ack.v#L32-L46
https://github.com/lykmast/coq-refinements/blob/main/theories/Tactics.v#L102
https://github.com/lykmast/coq-refinements/blob/main/theories/Tactics.v#L231-L234
https://github.com/lykmast/coq-refinements/blob/main/theories/Ack.v#L86-L97
https://gist.github.com/lykmast/4b32d6e319e8f6efdcdd593c78425616#file-ack_sniper-v
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