
Reasoning About Paths in the Interface Graph
Michael Greenberg #Ñ

Stevens Institute of Technology, Hoboken, NJ, USA

Abstract
Clearly specified interfaces between software components are invaluable: development proceeds in
parallel; implementation details are abstracted away; invariants are enforced; code is reused. But
this abstraction comes with a cost: well chosen interfaces let related tasks be grouped together,
but a running program interleaves tasks of all kinds. Reasoning about which values cross a given
interface or which interfaces a value will cross is challenging.

It is particularly hard to know that interfaces apply runtime enforcement mechanisms correctly:
as programs run, values cross abstraction boundaries in subtle ways. One particular case of such
reasoning – proving that a contract system checks contracts correctly at runtime [2, 3] – uses a
dynamic analysis to keep track of which interfaces are responsible for which values. The dynamic
analysis works by giving an alternative semantics that “colors” values to match the components
responsible for them. No program is ever run in this alternative semantics – it’s a formal tool to
verify that the contract system’s enforcement is correct.

In this short paper, we refine Dimoulas et al.’s dynamic analysis to more precisely track colors,
phrasing our results graph theoretically: a value’s colors are a path in the interface graph of the
original program. Our graph theoretic framing makes it easy to see that the dynamic analysis is
subsumed by Eelco Visser’s scope graphs.

2012 ACM Subject Classification Software and its engineering → Functional languages; Mathematics
of computing → Graph theory; Software and its engineering → Abstraction, modeling and modularity

Keywords and phrases interfaces, components, lambda calculus, dynamic analysis

Digital Object Identifier 10.4230/OASIcs.EVCS.2023.11

Acknowledgements I gratefully acknowledge the reviewers for their advice.

1 Introduction

Clearly specified interfaces between parts of a program – modules, libraries, components, etc. –
are key to software development. Good interfaces lighten the load of design, development, and
maintenance; good abstractions between interfaces make it easier to reason about programs.
Clever uses of module boundaries can yield dynamic guarantees: contracts on interfaces help
programmers identify modules that violate preconditions or don’t live up to postconditions;
object capability interfaces help programmers moderate access to critical resources.

But nicely abstracted, compartmentalized code doesn’t stay nicely abstracted and com-
partmentalized at runtime: at runtime, our beautiful abstraction barriers collapse into a
dynamic morass. Proving that a static enforcement mechanism yields worthwhile guarantees
can be hard – but it isn’t even clear where to start for dynamic enforcement mechanisms.
What property must we even prove to know that our runtime checks mean nothing goes
wrong?

Dimoulas et al. [2] use a dynamic analysis to prove that their higher-order contracts check
values appropriately. They describe a simple functional language – Contract PCF (CPCF) –
that puts contract monitors at interfaces, e.g., a math module might export a square-root
function with the contract {x : Float | x ≥ 0} → {y : Float | abs(y2 − x) < ϵ}, requiring
that its clients give non-negative inputs and promising to return square roots (within some
constant ϵ). At first order, these contracts amount to pre- and post-conditions. At higher
orders, blame labels identify the component responsible for contract failures, following Findler

© Michael Greenberg;
licensed under Creative Commons License CC-BY 4.0

Eelco Visser Commemorative Symposium (EVCS 2023).
Editors: Ralf Lämmel, Peter D. Mosses, and Friedrich Steimann; Article No. 11; pp. 11:1–11:11

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:michael@greenberg.science
https://greenberg.science
https://orcid.org/0000-0003-0014-7670
https://doi.org/10.4230/OASIcs.EVCS.2023.11
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

11:2 Reasoning About Paths in the Interface Graph

and Felleisen [4]. For Dimoulas et al., the core question is: if a value fails a check, does the
contract blame the correct component? Their dynamic analysis tracks which components
are “responsible” for each value. Each component has a “color” (a unique label, used also
for blame); values are colored with the components that are responsible for them. Using
bisimulation techniques, they prove that when a value fails a contract check, the label blamed,
the value that failed is colored with the same label – that is, when a value fails a check, we
blame the responsible component.

Dimoulas et al.’s approach is clever: the dynamic analysis annotates values with crucial
information... but rather than actually running the dynamic analysis, they prove a theorem
about it. Their approach is also complex: their analysis is specific to contracts; their analysis
is doesn’t precisely track the order of components responsible for a value. In this short
paper, we extend and generalize Dimoulas et al.’s analysis to track how values
dynamically traverse a program’s static interface graph. Our extension (Section 2)
yields a more precise dynamic analysis for reasoning about a program’s components graph
theoretically (Section 3). Our more precise analysis yields tools for relating values and
program control flow back to a program’s interface graph (Section 4). Finally, our notion of
interface graph is not dissimilar to Eelco Visser’s scope graphs [8] (Section 5).

2 A dynamic analysis for components and responsibility

Behavioral contracts can specify as little as the type of a function or as much as the full
behavior of a component through time. In first-order languages, contracts amount to pre-
and post-conditions; in higher-order languages, contracts must carefully track blame in order
to account for the flow of higher-order values. Findler and Felleisen [4] show that it suffices
to have just two blame labels to track a higher-order value: a “positive” label for the value
itself, and “negative” label for the context.

Dimoulas et al. study higher-order behavioral contracts, with the aim of proving that
contract violations blame the correct party. They extend the middleweight PCF calculus [9]
to Contract PCF (CPCF), adding a notion of contracts to monitor the interfaces between
components. Their key insight is that it’s possible to run the program in a semantics that uses
a dynamic analysis to track the parties responsible for each value, devising a semantics that:
“(1) for each party, keeps track of its contract obligations and (2) for each value, accounts for
its origin” [2]§3. That is, a contract system is correct when every time it checks a value for
contract conformance at some interface, then that interface is now “responsible for” that
value. To fulfill (1), each predicate contract – like number? or nonempty-list? – keeps track
of a set of responsibilities, i.e., the colors (unique labels) of those values it has monitored. To
fulfill (2), expressions and values keep track of a vector of colors identifying the components
responsible for that expression. Conflating blame labels and component colors, Dimoulas
et al. use this notion of correctness to great effect: they discover the need for a new indy
semantics that carries a third label in case contracts themselves violate preconditions (writing
monitors as monl1,l2

l3
, where l3 refers to the contract); they show that the picky semantics for

contracts cannot be correct in Racket [2], while the lax one can miss violations [3].

We refine Dimoulas et al.’s Contract PCF into the colored lambda calculus, the Clam calculus
for short. In doing so, we separate their tool – the dynamic analysis in the semantics – from
their use of it – proving correctness for contracts. Along the way, we refine their analysis to
make it more precise.

M. Greenberg 11:3

Terms e ::= x | k | op(e1, ... , en) | λx. e | e1 e2 | if e1 e2 e3 |
ifc(e)l1,l2 | ∥e∥l1,l2

Labels l ∈ Label = {l0, l1, . . . }

Figure 1 Syntax for the Clam calculus.

2.1 Syntax
The Clam calculus extends untyped lambda calculus with conventional notions of constant,
first-order operation, and conditional control flow – along with two new forms for marking
interfaces between components and colored expressions (Figure 1). These two extensions,
borrowed from Dimoulas et al., bear further discussion. Interfaces connect components
(deliberately generically named); we conflate components and their colors/labels, drawn from
some infinite set, Label. An interface form ifc(e)l1,l2 represents a static interface boundary:
l2 is the label for the “outside” of the interface, and l1 is the label for the inside of the
interface, which is implemented by the term e. These interfaces are static, occurring in
the original program text. A colored expression ∥e∥l1,l2 represents dynamically determined
responsibility: the component colored l1 was previously responsible for the expression e,
but now the component colored l2 is responsible. These colored expressions are dynamic,
arising as values flow through interfaces. Our syntax is directly adapted from Dimoulas et
al.’s original framing [2]: we’ve removed the contract checks, renaming their monitors mon
into our interfaces ifc. By removing contract checks, we no longer need the third blame
label; we track a list of labels on interfaces rather than their set of obligations on a predicate
contract, allowing us to characterize values using more precise, graph-theoretic notions
(Section 3). Finally, a colored expression gives both an inner and an outer label, unlike
Dimoulas’s single label. To put the last difference another way, our notion of responsibility
is always expressed as a transfer ; when just the component colored l is responsible for the
un-transferred expression, we write ∥e∥l,l .

We use standard encodings of notations like let; given a finite series of colors ln , we write
the left-to-right multi-coloring of an expression as: ∥e∥

−→
ln = ∥∥∥∥e∥l1,l2∥l2,...∥...,ln−1 ∥ln−1 ,ln

where ln is the outermost color. When the list of colors is empty, ∥e∥ϵ = e.
A source program has interfaces but no colored expressions: that is, a source program’s

components are connected, but no component has yet taken responsibility for the value.
We conflate a component and its label, but a component’s constituent expressions may

be scattered through a term. For example, consider the following term e0:

e0 = ifc(ifc(e1)l2,l1 1)l1,l0

e1 = ifc(ifc(e2)l1,l3)l3,l2

e2 = λx. x + 1

By convention, l0 is the outermost label; the component l1 applies ifc(. . .)l2,l1 to the value
1 – and deeply nested inside, the same component l1 contains the function λx. x + 1. As
another example, consider the following term, e3:

e3 = ifc(ifc(e4)lm ,lc . . .)lc,l0

e4 = λx. let db = ifc(e5)ld ,lm in
if (fst db = x) (snd db) (−1)

e5 = (password, secret)

Here, the component lc applies the results of component lm to some unspecified value (. . . in
e3); the component ld holds the database (e5) and is used by component lm (e4).

EVCS 2023

11:4 Reasoning About Paths in the Interface Graph

Values v ::= ∥u∥l1,l2 | ∥v∥l1,l2

Pre-values u ::= k | λx. e
Frames Fr ::= • e | v • | op(v1, ... , vi , • , e1, ... , ej) | if • e2 e3 |

ifc(•)l1,l2 | ∥ • ∥l1,l2

Continuations C ::= • | C ::Fr

Machine states st ::= ⟨C , l, e⟩

Figure 2 Syntax definitions for the Clam abstract machine.

⟨C , l, e1 e2⟩ −→ ⟨C :: • e2, l, e1⟩ AppStart
⟨C :: • e2, l, ∥λx. e1∥l1,...,ln ⟩ −→ ⟨C ::∥λx. e1∥l1,...,ln •, l, e2⟩ AppMiddle
⟨C ::∥λx. e1∥l1,...,ln •, l, ∥u2∥l′1,...,l′m ⟩ −→ ⟨C , l, ∥e1{∥u2∥l′1,...,l′m ,ln ,...,l1 /x}∥l1,...,ln ⟩ AppEnd
⟨C , l, op(e1, e2, ... , en)⟩ −→ ⟨C ::op(• , e2, ... , en), l, e1⟩ OpStart
⟨C ::op(v1, ... , vi , • , e1, e2, ... , ej), l, v⟩ −→ ⟨C ::op(v1, ... , vi , v, • , e2, ... , ej), l, e1⟩ OpMiddle

⟨C ::op(∥u1∥
−→
l1 , ... , ∥ui∥

−→
li , •), l, ∥u∥

−→
l ⟩ −→ ⟨C , l, [[op]] (u1, ... , ui , u)⟩ OpEnd

⟨C , l, if e1 e2 e3⟩ −→ ⟨C ::if • e2 e3, l, e1⟩ IfStart
⟨C ::if • e2 e3, l, ∥true∥l1,...,ln ⟩ −→ ⟨C , l, e2⟩ IfEndTrue
⟨C ::if • e2 e3, l, ∥false∥l1,...,ln ⟩ −→ ⟨C , l, e3⟩ IfEndFalse
⟨C , l, u⟩ −→ ⟨C , l, ∥u∥l,l⟩ ColorValue
⟨C , l, ∥e∥l1,l2 ⟩ −→ ⟨C ::∥ • ∥l1,l2 , l, e⟩ when e ̸= ∥u∥...,l′ ColorStart
⟨C ::∥ • ∥l1,l2 , l, v⟩ −→ ⟨C , l, ∥v∥l1,l2 ⟩ ColorEnd
⟨C , l, ifc(e)l1,l2 ⟩ −→ ⟨C ::ifc(•)l1,l , l1, e⟩ IfcStart
⟨C ::ifc(•)l1,l2 , l, ∥k∥l′1,...,l′n ⟩ −→ ⟨C , l2, ∥k∥l′1,...,l′n ,l2 ⟩ IfcEndBase
⟨C ::ifc(•)l1,l2 , l, ∥λx. e∥l′1,...,l′n ⟩ −→ ⟨C , l2, λx. ifc(∥λx. e∥l′1,...,l′n ifc(x)l2,l1)l1,l2 ⟩ IfcEndLam

Figure 3 Reduction semantics for the Clam abstract machine.

2.2 Semantics

While Dimoulas et al. use small-step operational semantics to give meaning to CPCF, we use
an abstract machine (Figures 2 and 3). Why? It’s hard to track the “current” component in
a small-step operational semantics, while an abstract machine makes it easy – essential for
our graph theoretic properties (Sections 3 and 4).

We define the Clam abstract machine in terms of machine states st, which are a triple of
the current continuation C (made up of frames Fr), the current component label l, and the
current term to reduce e (Figure 2). Our semantics distinguishes between colorless pre-values
u and colored values v. In the Clam calculus, it is an invariant that a colored expression’s last
color is the current component: for the component to be computing with a value, it must be
responsible for it. Reduction rules map machine states to machine states (Figure 3). The most
interesting rules are the ones for coloring and interfaces. The current component changes
whenever control enters a (static) interface or (dynamic) colored expression (IfcStart,
ColorStart); the component reverts back when control leaves (IfcEnd*, ColorEnd).
The ColorValue rule colors pre-values with the current component, dynamically making
the current component responsible for any values it generates.

M. Greenberg 11:5

Like in Dimoulas et al.’s semantics, interfaces treat constants and functions differently
when they pass over interfaces. When a constant moves to a new component, it acquires
the color of that component (IfcEndBase); when a function moves to a new component,
it is wrapped in a function proxy that takes the interface with it (IfcEndLam). That is,
a function f moving from l1 to l2 is wrapped in a lambda so that arguments to f in the
component l2 are sent back to l1 before running the function, whose result is moved from l1
to l2. Put another way, interfaces don’t add colors to lambdas at all – instead, interfaces
generate wrappers that do the “real” work on the arguments. The idea here – borrowed
directly from Dimoulas et al. – is that when higher-order values move from one component
to another, their bodies remain in the old component and values passed in to them come
from the new one.

One might wonder: why have two notions of coloring? First, it is convenient for reasoning
to distinguish static interfaces ifc(•)l1,l2 from dynamic ones ∥ • ∥l1,l2 . More importantly, it is
technically important to treat higher-order values specially at static interfaces (IfcEndLam).

Like in Dimoulas et al.’s semantics, our β reduction rule (AppEnd) updates responsibility
on substitution. Unlike their semantics, we don’t add the current component to the substituted
value: the current container l is the same as the final color ln on the function and the final
color l ′

m on the argument, so there’s no need to add colors from the context. This redundancy
doesn’t quite exist in their system. Since our coloring brackets have ordered pairs of colors,
we have a more precise account of inner and outer colors. Furthermore, we also color the
substituted argument value with the color of the lambda – as it has substituted in for the
variable in the lambda – and whoever is responsible for the lambda is responsible for its
input parameter. Both systems have redundancy in them: values will collect many redundant
copies of the same color. These redundant colors correspond to self-loops in the interface
graph between components (Section 3). Rather than treating a values accumulated colors as
an arbitrary list, we could have colors form a monoid with an operation that deduplicates
self loops. There’s no formal benefit in our abstract setting, though, so we don’t bother.

Also following Dimoulas et al., operations do not taint their outputs (OpEnd): operations
strip the colors off their inputs and produce uncolored prevalues.

In general, we’ll assume that there’s some default outer label l0, and to run the program
e we start with the configuration ⟨•, l0, e⟩. We’ll only do so, however, if e is well colored at l0.

2.3 Well colored terms
An expression is well colored when its interfaces and colored subexpressions agree (Figure 4);
rules for frames and continuations follow naturally, with ⊢ C : l ↠ l ′ meaning that the
continuation C expects its hole to be filled with something labeled l and produces a term
labeled l ′.

Coloring enjoys the expected type-like properties of substitution and preservation. Color-
ing has no progress property: colors don’t say anything about the correctness of the program’s
operations; colors say that a program’s components agree at their interfaces. Ill colored
programs do not go wrong.

▶ Lemma 2.1 (Substitution). If L, x:l ′, L′ ⊢ e : l and ∅ ⊢ v : l ′ (where v = ∥u∥...,l′), then
L, L′ ⊢ e{v/x} : l.

Proof. By induction on the coloring derivation of e, leaving L′ general and relying on a
weakening lemma. ◀

▶ Lemma 2.2 (Preservation). If ⊢ st : l ′ and st −→ st′ then ⊢ st : l ′.

EVCS 2023

11:6 Reasoning About Paths in the Interface Graph

L ⊢ e : l

x:l ′ ∈ L
L ⊢ x : l ′ Var L ⊢ k : l Const

L, x:l ⊢ e12 : l
L ⊢ λx. e12 : l Abs

L ⊢ ei : l
L ⊢ op(e1, ... , en) : l Op

L ⊢ e1 : l L ⊢ e2 : l
L ⊢ e1 e2 : l App

L ⊢ e : l1
L ⊢ ∥e∥l1,l2 : l2

Color

L ⊢ e1 : l L ⊢ e2 : l L ⊢ e3 : l
L ⊢ if e1 e2 e3 : l If

L ⊢ e : l1
L ⊢ ifc(e)l1,l2 : l2

Ifc

⊢ Fr : l1 ↠ l2 ⊢ C : l1 ↠ l2 ⊢ st : l ′

∅ ⊢ e : l
⊢ • e : l ↠ l FAppL

∅ ⊢ v : l
⊢ v • : l ↠ l FAppR

∅ ⊢ e2 : l ∅ ⊢ e3 : l
⊢ if • e2 e3 : l ↠ l FIf

⊢ ∥ • ∥l1,l2 : l1 ↠ l2
FColor

⊢ ifc(•)l1,l2 : l1 ↠ l2
FIfc

⊢ • : l ↠ l Hole

⊢ C : l ′ ↠ l ′′ ⊢ Fr : l ↠ l ′

⊢ C ::Fr : l ↠ l ′′ Frame
⊢ C : l ↠ l ′ ∅ ⊢ e : l

⊢ ⟨C , l, e⟩ : l ′ State

Figure 4 Well colored expressions have correct labels on interfaces and colored expressions. Well
colored continuations transition according to well colored frames; well colored states match the term
to the current component and the continuation.

Proof. By induction on the coloring derivation. Let st = ⟨C , l, e⟩. We go first by cases on
the coloring of e as ∅ ⊢ e : l, considering the continuation C and its coloring ⊢ C : l ↠ l ′ as
necessary. ◀

3 Interface and value graphs

The Clam calculus explicitly marks interfaces between components in the program so that
we can reason clearly about how components communicate. We use graphs to formalize the
idea: a term e has a program graph marking the interfaces between each colored component
in e. Program graphs are undirected graphs where each color is a node; when there exists an
interface between two components/colors, an edge connects their corresponding nodes.

Each term e has two kinds of program graphs (Figure 5): the interface graph and the value
graph. In both graphs, the nodes are simply the set of colors used in e, i.e., e’s components.
In the interface graph, ig(e), we take the graph’s edges from interfaces – there is an edge
{l1 ↔ l2} for each interface ifc(e)l1,l2 . In the value graph, vg(e), we take the graph’s edges
from colorings – there is an edge {l1 ↔ l2} for each coloring ∥e∥l1,l2 . For both graphs, we
assume that all nodes have self loops: for every l ∈ e, the edge {l ↔ l} is in every program
graph. Both kinds of program graphs are mostly defined homomorphically – the interesting
cases come in the treatment of interfaces and colored expressions.

While an expression has a straightforward tree structure, well colored expressions will
have interface graphs, with loops. The program e0 from Section 2.1 has a lasso structure
(Figure 6, left): there is a loop using the edges {l2 ↔ l1} and {l3 ↔ l2} and {l1 ↔ l3}.
Evaluating this program yields a value whose colors trace appropriately through the interface
graph (Figure 7).

M. Greenberg 11:7

ig(x) = ∅
ig(k) = ∅

ig(λx. e) = ig(e)
ig(op(e1, ... , en)) =

⋃n
i=1 ig(ei)

ig(e1 e2) = ig(e1) ∪ ig(e2)
ig(if e1 e2 e3) =

⋃3
i=1 ig(ei)

ig(ifc(e)l1,l2) = {l1 ↔ l2} ∪ ig(e)
ig(∥e∥l1,l2) = ig(e)

vg(x) = ∅
vg(k) = ∅

vg(λx. e) = vg(e)
vg(op(e1, ... , en)) =

⋃n
i=1 vg(ei)

vg(e1 e2) = vg(e1) ∪ vg(e2)
vg(if e1 e2 e3) =

⋃3
i=1 vg(ei)

vg(ifc(e)l1,l2) = vg(e)
vg(∥e∥l1,l2) = {l1 ↔ l2} ∪ vg(e)

Figure 5 Program graphs record the connections between interfaces in a program. The interface
graph ig records interfaces, while the value graph vg records coloring/responsibility relationships.
Interesting rows are highlighted in lavender . Definitions for frames can be derived from definitions
for expressions, where holes • have empty graphs.

e0 = ifc(ifc(e1)l2,l1 1)l1,l0

e1 = ifc(ifc(e2)l1,l3)l3,l2

e2 = λx. x + 1

l0 l1 l2 l3

e3 = ifc(ifc(e4)lm ,lc . . .)lc,l0

e4 = λx. let db = ifc(e5)ld ,lm in
if (fst db = x) (snd db) (−1)

e5 = (password, secret)

l0 lc lm ld

Figure 6 Example programs and their corresponding interface graphs.

But some programs are deliberately structured to avoid certain forms of communication.
Say, a client should only ever talk to the database by way of the middleware, never directly
(Figure 6, right). The term e5 is a password-protected database in component ld , containing
a value secret that appears nowhere else in the program. The term e3 is a client of the
database in component lc – it supplies a password and tries to work with the secret. The
term e4 is the middleware in component lm; it takes a password from the client and either
returns the secret database contents or signals an error by returning −1. By inspecting the
interface graph, we can see that there is no direct connection from the database to the client.

4 Paths in the interface graph

Interface and value graphs let us characterize how values flow between components. Inspired
by Dimoulas et al.’s proof of contract correctness, we show that (1) as programs run, their
trace is a path in the interface graph (Lemma 4.1) and (2) value colorings are paths in
the interface graph (Lemma 4.2). Both properties rely on a subject reduction like lemma:
reducing a term yields a new term whose interface graph is a subgraph of the original term’s
interface graph (Lemma A.3). A similar property holds for the value graph, though the
value graph of a term may gain edges as interfaces turn into colored expressions (Figure 3,
IfcEnd*).

EVCS 2023

11:8 Reasoning About Paths in the Interface Graph

⟨•, l0, ifc(ifc(ifc(ifc(λx. x + 1)l1,l3)l3,l2)l2,l1 1)l1,l0⟩
−→ ⟨ifc(•)l1,l0 , l1, ifc(ifc(ifc(λx. x + 1)l1,l3)l3,l2)l2,l1 1⟩
−→ ⟨ifc(•)l1,l0 :: • 1, l1, ifc(ifc(ifc(λx. x + 1)l1,l3)l3,l2)l2,l1⟩
−→ ⟨. . . :: • 1::ifc(•)l2,l1 , l2, ifc(ifc(λx. x + 1)l1,l3)l3,l2⟩
−→ ⟨. . . ::ifc(•)l2,l1 ::ifc(•)l3,l2 , l3, ifc(λx. x + 1)l1,l3⟩
−→ ⟨. . . ::ifc(•)l3,l2 ::ifc(•)l1,l3 , l1, λx. x + 1⟩
−→ ⟨. . . ::ifc(•)l3,l2 ::ifc(•)l1,l3 , l1, ∥λx. x + 1∥l1,l1⟩
−→ ⟨. . . ::ifc(•)l2,l1 ::ifc(•)l3,l2 , l3, λy. ifc(∥λx. x + 1∥l1,l1 ifc(y)l3,l1)l1,l3⟩
−→ ⟨. . . ::ifc(•)l2,l1 ::ifc(•)l3,l2 , l3, ∥λy. ifc(∥λx. x + 1∥l1,l1 ifc(y)l3,l1)l1,l3∥l3,l3⟩
−→ ⟨. . . :: • 1::ifc(•)l2,l1 , l2,

λz. ifc(∥λy. ifc(∥λx. x + 1∥l1,l1 ifc(y)l3,l1)l1,l3∥l3,l3 ifc(z)l2,l3)l3,l2⟩
−→ ⟨. . . :: • 1::ifc(•)l2,l1 , l2,

∥λz. ifc(∥λy. ifc(∥λx. x + 1∥l1,l1 ifc(y)l3,l1)l1,l3∥l3,l3 ifc(z)l2,l3)l3,l2∥l2,l2⟩
−→ ⟨ifc(•)l1,l0 :: • 1, l1,

λw. ifc(∥λz. ifc(∥λy. ifc(∥λx. x + 1∥l1,l1 ifc(y)l3,l1)l1,l3∥l3,l3 ifc(z)l2,l3)l3,l2∥l2,l2 ifc(w)l1,l2)l2,l1⟩
−→ ⟨ifc(•)l1,l0 :: • 1, l1,

∥λw. ifc(∥λz. ifc(∥λy. . . . ∥l3,l3 ifc(z)l2,l3)l3,l2∥l2,l2 ifc(w)l1,l2)l2,l1∥l1,l1⟩
−→ ⟨ifc(•)l1,l0 ::∥λw. . . . ∥l1,l1 •, l1, 1⟩
−→ ⟨ifc(•)l1,l0 ::∥λw. . . . ∥l1,l1 •, l1, ∥1∥l1,l1⟩
−→ ⟨ifc(•)l1,l0 , l1,

ifc(∥λz. ifc(∥λy. . . . ∥l3,l3 ifc(z)l2,l3)l3,l2∥l2,l2 ifc(∥1∥l1,l1)l1,l2)l2,l1⟩
−→ ⟨ifc(•)l1,l0 ::ifc(•)l2,l1 , l2,

∥λz. ifc(∥λy. . . . ∥l3,l3 ifc(z)l2,l3)l3,l2∥l2,l2 ifc(∥1∥l1,l1)l1,l2⟩
−→ ⟨⟨. . . ::ifc(•)l2,l1 ::∥λz. . . . ∥l2,l2 •, l2, ifc(∥1∥l1,l1)l1,l2⟩⟩
−→ ⟨⟨. . . ::∥λz. . . . ∥l2,l2 • ::ifc(•)l1,l2 , l1, ∥1∥l1,l1⟩⟩
−→ ⟨⟨. . . ::ifc(•)l2,l1 ::∥λz. . . . ∥l2,l2 •, l2, ∥1∥l1,l2⟩⟩
−→ . . .

−→ ⟨•, l0, ∥2∥l1,l3,l2,l1⟩

Figure 7 Abbreviated evaluation trace of e0 from Figure 6, omitting repeated colors for brevity
and clarity.

4.1 Program traces

The trace of a program’s evaluation is the sequence of currently executing components; such
traces are paths in the value graph. To this precise, let trace (⟨C1, l1, e1⟩ −→ ⟨C2, l2, e2⟩ −→
... −→ ⟨Cn, ln, en⟩) be defined as l1, l2, . . . , ln – the payoff of our abstract machine (Section 2.2).
For our purposes, a path in a graph is a list of nodes l1, l2, . . . , ln such that the edge {li−1 ↔ li}
is in the graph.

▶ Lemma 4.1 (Traces are paths). If ⊢ ⟨C , l, e⟩ : l ′′, then trace (⟨C , l, e⟩ −→∗ ⟨C ′, l ′, e′⟩) is a
path in ig(⟨C , l, e⟩).

Proof. By induction on the length of the trace, observing that component changes must
be edges in the interface graph (Lemma A.4) and reducing a term yields a subgraph
(Lemma A.3). ◀

M. Greenberg 11:9

4.2 Value colorings
As program e evaluates, the values in e will gain colors – the colors on these values form
paths in e’s interface graph. We are particularly interested in source programs (with no
coloring at all), but this property holds whenever vg(e) ⊆ ig(e).

▶ Lemma 4.2 (Value colorings are paths). If ⊢ st : l ′′ and vg(st) ⊆ ig(st) and st −→∗ st′,
then for any value v = ∥u∥l1,...,ln in st′, the path l1, . . . , ln is in ig(st).

Proof. By induction on the length of the evaluation, strengthening the induction hypothesis
to show also that vg(st′) is a subgraph of ig(st). If st −→∗ st′, then vg(st′) ⊆ vg(st) ∪ ig(st)
(Lemma A.3) in line with our strengthened IH. ◀

4.3 Discussion
The properties we show here are intuitive and simple – arguably too simple. Preservation of
well coloring (Lemma 2.2) and our coloring rules guarantee that colors are not trivial and
our semantics updates colors correctly when traversing components. But who is to say that
the program has interesting colors at all? Values in a “blob” program with a single module
indeed trace a path in the interface graph, but that path is nothing more than a trivial self
loop. There’s nothing we can do about program structure: if the program has few or no
modules, the program’s graphs will be meager and paths will tell you little or nothing.

We have not applied our generalized analysis to show any more interesting property. It
is not hard to recover the core of Dimoulas et al.’s proof: replace any monk,l

j (⌊flat(ec)⌋, e)
with a dynamic check that ec e yields true. Recovering more – dependent contract checking
in the variety of styles – would require altering the semantics to closer match theirs. We also
envision applications in object capability or other access control enforcement mechanisms.
Our graph-theoretic theorems could guide an auditing process, guiding developers through
the (syntactically non-obvious) series of interfaces that a value might traverse at runtime.
Inspecting interfaces in the order that values will traverse them should help developers avoid
classic and common issues with confused deputies, i.e., proxies that mediate access but can
be tricked to escalate or misuse privileges.

5 Scope graphs (and other related work)

The Clam calculus is directly based on Dimoulas et al.’s work on contracts [2, 3], but there
is a long line of research on components, containment, and interfaces in general and in the
lambda calculus in particular.

On the theoretical side, the colors in the Clam calculus are similar to the labels in labeled
lambda calculus [5]. Their labels differ from ours in a few ways: they are one-sided, while
our interfaces and colored expressions are double-sided; they use over- and underlining to
distinguish the parts of a β reduct; their semantics has no notion of a “current component”;
they allow unlabeled values; and they work in a pure lambda calculus setting, without
constants, operations, or conditional control flow. In principle, it might be possible to fit the
Clam calculus into the labeled lambda calculus framework – though what advantage this
would bring is unclear. The purposes are different, too: our labels are for reasoning about
components, but Lévy is more interested in subtle properties of lambda calculus evaluation.

On the practical side, the informal notion of an interface or dependency graph is as
old as modularity itself. Components have long been used to reason about “locality” or
“containment” – for famous examples, see Morris [7], Dennis and Van Horn [1], or Miller [6].
Zdancewic et al. provide a more closely related notion of ownership [14], cited as direct
inspiration by Dimoulas et al. [3].

EVCS 2023

11:10 Reasoning About Paths in the Interface Graph

Finally, Eelco Visser’s scope graphs [8] are not dissimilar to the Clam calculus: Visser’s
scope graphs offer much more complete static [12] and dynamic [10, 13] accounts of binding
and the flow of values in a program than either the original analysis or our extension – though
scope graphs don’t (by default) track the information in Clam’s colors.

Compared to the Clam calculus’s ifc nodes and colored expressions, scope graphs support
a wide range of binding forms, including much more realistic models of modules ([8], Section
2.4). Scope graphs’ resolution paths don’t quite match the semantics of our colored expressions
– but we can imagine extending resolution paths to track detailed path information. Such
“colored resolution paths” would give a cleaner dynamic semantics [10], admitting clearly
specified and meaningful static analyses [12, 11] – though they would not (without substantial
work) track paths in the interface graph in quite the same way. The Clam calculus’s model is
not tuned for implementation (e.g., rule IfcEndLam in Figure 3), but scope graphs readily
admit prototype-level implementations [10] or better [13].

6 Conclusion

The Clam calculus refines Dimoulas et al.’s imprecise dynamic analysis, relating interfaces
and value to straightforward graph-theoretic concepts. We offer the Clam calculus as a
reusable generalization of Dimoulas et al.’s dynamic analysis – a starting point for reasoning
about modularity and runtime control.

References
1 Jack B. Dennis and Earl C. Van Horn. Programming semantics for multiprogrammed compu-

tations. CACM, 9(3), March 1966. doi:10.1145/365230.365252.
2 Christos Dimoulas, Robert Bruce Findler, Cormac Flanagan, and Matthias Felleisen. Correct

blame for contracts: no more scapegoating. In POPL. ACM, 2011. URL: http://www.ccs.
neu.edu/home/chrdimo/pubs/popl11-dfff.pdf.

3 Christos Dimoulas, Sam Tobin-Hochstadt, and Matthias Felleisen. Complete monitors for
behavioral contracts. In ESOP, volume 7211 of LNCS. Springer, 2012. URL: http://www.ccs.
neu.edu/home/chrdimo/pubs/esop12-dthf.pdf.

4 Robert Bruce Findler and Matthias Felleisen. Contracts for higher-order functions. In ICFP.
ACM, 2002. doi:10.1145/581478.581484.

5 Jean-Jacques Lévy. Tracking redexes in the lambda calculus, 2022. In submission. URL:
http://pauillac.inria.fr/~levy/pubs/22trackredex.pdf.

6 Mark Samuel Miller. Robust Composition: Towards a Unified Approach to Access Control and
Concurrency Control. PhD thesis, Johns Hopkins University, Baltimore, Maryland, USA, May
2006. URL: http://www.erights.org/talks/thesis/markm-thesis.pdf.

7 James H. Morris. Protection in programming languages. CACM, 16(1), January 1973.
doi:10.1145/361932.361937.

8 Pierre Neron, Andrew P. Tolmach, Eelco Visser, and Guido Wachsmuth. A theory of name reso-
lution. In ESOP, volume 9032 of LNCS. Springer, 2015. doi:10.1007/978-3-662-46669-8_9.

9 G.D. Plotkin. Lcf considered as a programming language. Theoretical Computer Science,
5(3):223–255, 1977. doi:10.1016/0304-3975(77)90044-5.

10 Casper Bach Poulsen, Pierre Néron, Andrew P. Tolmach, and Eelco Visser. Scopes describe
frames: A uniform model for memory layout in dynamic semantics. In ECOOP, volume 56
of LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016. doi:10.4230/LIPIcs.
ECOOP.2016.20.

11 Hendrik van Antwerpen, Casper Bach Poulsen, Arjen Rouvoet, and Eelco Visser. Scopes as
types. PACMPL, 2(OOPSLA), October 2018. doi:10.1145/3276484.

https://doi.org/10.1145/365230.365252
http://www.ccs.neu.edu/home/chrdimo/pubs/popl11-dfff.pdf
http://www.ccs.neu.edu/home/chrdimo/pubs/popl11-dfff.pdf
http://www.ccs.neu.edu/home/chrdimo/pubs/esop12-dthf.pdf
http://www.ccs.neu.edu/home/chrdimo/pubs/esop12-dthf.pdf
https://doi.org/10.1145/581478.581484
http://pauillac.inria.fr/~levy/pubs/22trackredex.pdf
http://www.erights.org/talks/thesis/markm-thesis.pdf
https://doi.org/10.1145/361932.361937
https://doi.org/10.1007/978-3-662-46669-8_9
https://doi.org/10.1016/0304-3975(77)90044-5
https://doi.org/10.4230/LIPIcs.ECOOP.2016.20
https://doi.org/10.4230/LIPIcs.ECOOP.2016.20
https://doi.org/10.1145/3276484

M. Greenberg 11:11

12 Hendrik van Antwerpen, Pierre Neron, Andrew P. Tolmach, Eelco Visser, and Guido
Wachsmuth. A constraint language for static semantic analysis based on scope graphs.
In PEPM. ACM, 2016. doi:10.1145/2847538.2847543.

13 Vlad Vergu, Andrew Tolmach, and Eelco Visser. Scopes and Frames Improve Meta-Interpreter
Specialization. In ECOOP, volume 134 of Leibniz International Proceedings in Informatics
(LIPIcs), Dagstuhl, Germany, 2019. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:
10.4230/LIPIcs.ECOOP.2019.4.

14 Steve Zdancewic, Dan Grossman, and J. Gregory Morrisett. Principals in programming
languages: A syntactic proof technique. In ICFP. ACM, 1999. URL: http://www.eecs.
harvard.edu/~greg/papers/pipl.pdf.

A Proofs

▶ Definition A.1 (Subgraphs). A graph gr1 is a subgraph of a graph gr2 if the nodes of gr1
are a subset of the nodes of gr2 and if an edge is in gr1 then it is in gr2.

▶ Lemma A.2 (Substitution yields subgraphs).
1. ig(e{v/x}) is a subgraph of ig(e) ∪ ig(v).
2. vg(e{v/x}) is a subgraph of vg(e) ∪ vg(v).

Proof. By induction on e. The graphs are equal if x occurs free in e; if x doesn’t occur, then
the resulting graph is just e’s. ◀

▶ Lemma A.3 (Reduction yields subgraphs). If ⊢ st1 : l and st1 −→ st2 then
1. ig(st2) is a subgraph of ig(st1), and
2. vg(st2) is a subgraph of ig(st1) ∪ vg(st1).

Proof. By case analysis on the reduction step taken. ◀

▶ Lemma A.4 (Component changes are edges). If ⟨C , l, e⟩ −→ ⟨C , l ′, e′⟩, then {l ↔ l ′} is in
ig(⟨C , l, e⟩) ∪ vg(⟨C , l, e⟩).

Proof. By case analysis on the step taken. ◀

▶ Lemma A.5 (Subpaths). If l1, . . . , ln is a path in a graph gr, then it is also a path in all
supergraphs of gr.

Proof. Given a supergraph gr ′, by induction on the length of the path. In the inductive case,
since gr is a subgraph of gr ′, every edge in the path in gr must be present in the gr ′. ◀

EVCS 2023

https://doi.org/10.1145/2847538.2847543
https://doi.org/10.4230/LIPIcs.ECOOP.2019.4
https://doi.org/10.4230/LIPIcs.ECOOP.2019.4
http://www.eecs.harvard.edu/~greg/papers/pipl.pdf
http://www.eecs.harvard.edu/~greg/papers/pipl.pdf

	1 Introduction
	2 A dynamic analysis for components and responsibility
	2.1 Syntax
	2.2 Semantics
	2.3 Well colored terms

	3 Interface and value graphs
	4 Paths in the interface graph
	4.1 Program traces
	4.2 Value colorings
	4.3 Discussion

	5 Scope graphs (and other related work)
	6 Conclusion
	A Proofs

