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Abstract

Refinement type checkers are a powerful way to reason about
functional programs. For example, one can prove properties
of a slow, specification implementation and port the proofs
to an optimized pure implementation that behaves the same.
But to reason about higher-order programs, we must reason
about equalities between functions: we need a consistent
encoding of functional extensionality.

A natural but naive phrasing of the functional extensional-
ity axiom (funext) is inconsistent in refinement type systems
with semantic subtyping and polymorphism: if we assume
funext, then we can prove false. We demonstrate the incon-
sistency and develop a new approach to equality in Liquid
Haskell: we define a propositional equality in a library we
call PEq. Using PEq avoids the inconsistency while proving
useful equalities at higher types; we demonstrate its use in
several case studies. We validate PEq by building a model and
developing its metatheory. Additionally, we prove metaprop-
erties of PEq inside Liquid Haskell itself using an unnamed
folklore technique, which we dub ‘classy induction’.
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ware verification.
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1 Introduction

Refinement types have been extensively used to reason about
pure functional programs [12, 30, 31, 37, 47]. Equipped with
SMT reasoning, and thus SMT equality, proving equalities
between fully applied (first-order) expressions is straightfor-
ward for such systems. For example, Vazou et al. [41] prove
function optimizations correct by equating the results of
slow and fast program versions. Do these equalities hold in
the context of higher order functions (e.g., maps and folds)
or do the proofs need to be redone for each fully applied
context? Without functional extensionality (a.k.a. funext),
one must duplicate proofs for each higher-order function.
Worse still, all reasoning about higher-order representations
of data requires first-order observations.
Most verification systems allow for function equality by

way of functional extensionality, either built-in (e.g., Lean) or
as an axiom (e.g., Agda, Coq). Liquid Haskell and F∗, two ma-
jor, SMT-based verification systems using refinement types,
are no exception: function equalities come up regularly. But,
in both these systems, first attempts at axioms for functional
extensionality were wrong1. A naive funext axiom proves
equalities between unequal functions.
We begin by describing why a naive encoding of funext

is inconsistent (ğ2). At first sight, function equality can be
encoded as a refinement type stating that for functions f

and g, if we can prove that f x equals g x for all x, then the
functions f and g are equal:

funext :: ∀ a b. f:(a → b) → g:(a → b)

→ (x:a → {f x = g x}) → {f = g}

(The refinement proposition {e} is equivalent to {_:() |

e}.) On closer inspection, funext encodes function equality
improperly: its resulting domain equates f and g without
reference to the domain a, seemingly applying on any do-
main. What if we instantiate the domain type parameter a’s
refinement to an intersection of the domains of the input
functions or, worse, to an uninhabited type? Would such an
instantiation of funext still prove equality of the two input
functions? It turns out that this naive extensionality axiom
is inconsistent with refinement types: in ğ2 we assume this
naive funext and prove falseÐdisaster! We work in Liquid
Haskell, but the problem generalizes to any refinement type

1 See https://github.com/FStarLang/FStar/issues/1542 for F∗’s initial, wrong
encoding and ğ6 for F∗’s different solution. We explain the situation in
Liquid Haskell in ğ2.
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system that allows for semantic subtyping along with poly-
morphism. F∗ used to have the same naive encoding until
2018 that F∗’s developers reported the inconsistency in a (im-
penetrable to non-refinement type experts) github issue1. To
be sound, proofs of function equality must carry information
about the domain type on which the compared functions are
equal.

Our second contribution is to define a type-indexed propo-
sitional equality as a Liquid Haskell library (ğ3), where the
type indexing uses a refined Haskell data type generated
by three axioms. We call the propositional equality PEq and
find that it adequately reasons about function equality: we
can prove the theorems we want and we can’t prove the
(non-) theorems we don’t want. Further, we prove in Liquid
Haskell itself that the implementation of PEq is an equiva-
lence relation, i.e., it is reflexive, symmetric, and transitive.
To conduct these proofsÐwhich go by structural induction
on the type indexÐwe apply a heretofore-unnamed folklore
proof methodology, which we dub classy induction (ğ3.3).
Our third contribution is to use PEq to prove a variety of

equalities heretofore inaccessible in Liquid Haskell (ğ4), from
equalities between functions up to monads. As simple exam-
ples, we prove optimizations correct as equalities between
functions (i.e., reverse ), work carefully with functions that
only agree on certain domains and dependent codomains, lift
equalities to higher-order contexts (i.e., map), prove equiv-
alences with multi-argument higher-order functions (i.e.,
fold), showcase how higher-order, propositional equalities
can co-exist with and speedup executable code, and prove
monad laws for reader monads.
Our fourth and final contribution is to formalize 𝜆𝑅𝐸 , a

core calculus modeling PEq’s two important features: type-
indexed, functionally extensional propositional equality and
refinement types with semantic subtyping. We prove that
𝜆𝑅𝐸 is sound and that propositional equality implies equality
in a term model of equivalence (ğ5).
An extended (with proofs) version of this paper can be

found in [42] and our implementation can be found at gihub
in github.com/nikivazou/propositional-equality.

2 Functional Extensionality in Refinement
Types

We start (ğ 2.1) by concrete examples that showcase the in-
consistencies of a naive encoding for function extensionality
in refinement types and then (ğ 2.2) introduce an alternative
type-indexed encoding.

2.1 Inconsistency of the Naive Encoding

Functional extensionality states that two functions are equal,
if their values are equal at every argument:

∀𝑓 , 𝑔 : 𝐴 → 𝐵,∀𝑥 ∈ 𝐴, 𝑓 (𝑥) = 𝑔(𝑥) ⇒ 𝑓 = 𝑔 (1)

Most theorem provers consistently admit functional exten-
sionality as an axiom, which we call funext throughout. Ad-
mitting funext is a convenient way to generate equalities on
functions and reuse higher order proofs. But correctly encod-
ing funext in a refinement typed language is not trivial. For
example, in Liquid Haskell we naively admitted the funext

axiom below (we highlight Liquid Haskell type signatures

that in the implementation are written as comments):

assume funext :: ∀ a b. f:(a → b) → g:(a → b)

→ (x:a → {f x = g x}) → {f = g}

funext _f _g _pf = ()

The assume keyword introduces an axiom: Liquid Haskell
will accept the refinement signature of funext wholesale
and ignore its definition. Also, note that the = symbol in the
refinements refers to SMT equality (see ğ3.4). Our encoding
certainly looks like the mathematical encoding (1). But looks
can be deceiving: in Liquid Haskell, we can use funext to
prove false . Why?

Consider two functions on Ints: the incrInt function in-
creases all integers by one; the incrPos function increases
positive numbers by one, returning 0 otherwise:

incrInt, incrPos :: Int → Int

incrInt n = n + 1

incrPos n = if 0 < n then n + 1 else 0

Liquid Haskell easily proves that these two functions behave
the same on positive numbers:

type Pos = {n:Int | 0 < n}

incrSamePos :: n:Pos → {incrPos n = incrInt n}

incrSamePos _n = ()

Using our proof incrSamePos on the domain of positive num-
bers, our funext axiom proves incrPos and incrInt equal.

incrExt :: {incrPos = incrInt}

incrExt = funext incrPos incrInt incrSamePos

Having incrExt to hand, it’s easy to prove that every higher-
order use of incrPos can be replaced with incrInt , which
is much more efficientÐit saves us a conditional branch!
For example, incrMap shows that mapping over a list with
incrPos is just the same as mapping over it with incrInt .

incrMap :: xs:[Pos]

→ {map incrPos xs = map incrInt xs}

incrMap xs = incrExt

We could prove incrMap without function equality, i.e., if
we only knew incrSamePos . To do so, we would write an
inductive proofÐand we’d have to redo the proof for every
context in which we would rewrite incrPos to incrInt . So
funext is in part about modularity and reuse in theorem
proving. But funext is critical to equate structures that are
themselves higher orderÐlike the reader monad (ğ 4.6).
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Unfortunately, incrExt proves too many equivalences...
our system is inconsistent! We prove that 0 equals -4:

inconsistencyI :: {incrPos (-5) = incrInt (-5)}

inconsistencyI = incrExt -- proof of 0 = −4

What happened here? How can we have that equality... that
0 = -4? Liquid Haskell looked at incrExt and saw the two
functions were equal... without any regard to the domain
on which incrExt proved incrPos and incrInt equal! We
forgot the domain, and so incrExt generates a proof in SMT
that those two functions are equal on any domain.
In short, funext is inconsistent in Liquid Haskell! Liquid

Haskell forgets the domain on which the two functions are
proved equal, remembering only the equality itself.

We can exploit funext to find equalities between any two
functions that share the same Haskell type on the empty

domain and Liquid Haskell will treat these functions as uni-
versally equal. For example, the plus2 function adds 2 to its
input; it does not equal incrInt on any nontrivial domain.

plus2 :: Int → Int

plus2 x = x + 2

But plus2 does behave the same as incrInt on the empty
domain, i.e., for all inputs n that satisfy false .

type Emp = {v:Int | false}

incrSameEmp :: n:Emp → {incrInt n = plus2 n}

incrSameEmp _n = ()

Now incrSame Emp provides enough evidence for funext to
show that incrInt equals plus2Ðdiscarding the empty do-
main and proving another egregious inconsistency.

incrPlus2Ext :: {incrInt = plus2}

incrPlus2Ext = funext incrInt plus2 incrSameEmp

inconsistencyII :: {incrInt 0 = plus2 0}

inconsistencyII = incrPlus2Ext -- proof of 1 = 2

Refinement types, unlike type theories that are consistent
with function equality, permit implicit subtyping. When call-
ing incrPlus2Ext , the domains of the functions are implic-
itly strengthened to the empty domain of the incrSame Emp

proof. Implicit subtyping is an extremely convenient feature
when programming with refinement types that let us, as a
trivial example, divide with a value of type {v:Int | v > 0},
without any proof that 𝑣 > 0 ⇒ 𝑣 ≠ 0. But, when it comes to
function equality, implicit subtyping renders a huge burden.
Even though function equality has been extensively studied
under various type theories (ğ 6), none of these support im-
plicit subtyping. But, in Liquid Haskell we still need to prove
equalities between higher-order values! What can we do?

2.2 Refined, Type-Indexed, Extensional,

Propositional Equality

When proving equalities, we must be careful about the do-
mains of the functions involved. Proving 𝑓 and 𝑔 extension-
ally equal, we must reason about four domains. Let D𝑓 and
D𝑔 be the domains on which the functions 𝑓 and 𝑔 are re-
spectively defined. Let D𝑝 be the domain on which the two
functions are proved equal and D𝑒 the domain on which the
resulting equality between the two functions is found. In
our incrExt example above: the function domains are Int

(D𝑓 = D𝑔 = Int), as specified by the function definitions;
the domain of the proof is positive numbers (D𝑝 = Pos), as
specified by incrSamePos ; and, disastrously, the domain of
the equality itself is unspecified in funext . Liquid Haskell
chooses the most general domain possible (D𝑒 = Int).

The funext axiom imposes no constraints between these
domains, merely requiring that D𝑓 , D𝑔, and D𝑝 be super-
types of the empty domain, which trivially holds for all types,
leaving D𝑒 underconstrained.

To be consistent, it suffices for our functional extensional-
ity axiom to (1) capture the domain of function equality D𝑒

explicitly, (2) require that the domain of the equality, D𝑒 , is
a subtype of the domain of the proof, D𝑝 , itself a subtype of
the functions’ domains, D𝑓 and D𝑔, and (3) restrict any use
of the resulting equality between functions to subdomains
of D𝑒 .

Our solution is to define a refined, type-indexed, extensional
propositional equality. We do so in the Liquid Haskell li-
brary PEq, which defines a propositional equality also called
PEq. We write PEq a {e𝑙} {e𝑟} to mean that the expressions
e𝑙 and e𝑟 are propositionally equal at type a. We carefully
axiomatize PEq (ğ3) to meet our three criteria.

1. PEq is Type-Indexed. The type index a in PEq a {e𝑙}

{e𝑟} makes it easy to track types explicitly. We encode func-
tional extensionality as the xEq axiom that keeps careful
track of types:

assume xEq :: f:(a → b) → g:(a → b)

→ (x:a → PEq b {f x} {g x})

→ PEq (a → b) {f} {g}

The result type of xEq explicitly captures the equality domain
as the domain of the function type in the returned equality
(i.e., a). The standard variance and type checking rules of
Liquid Haskell ensure that the domains D𝑓 , D𝑔 , and D𝑝 are
supertypes of D𝑒 .

2. Generating Function Equalities. The axiom xEq gen-
erates equalities at function types using functional exten-
sionality. Liquid Haskell checks the domains, never proving
equality between functions at an inappropriate domain.

Returning to incrPos and incrInt , we can use xEq to find

these functions equal on the domain Pos, highlighting the

Liquid Haskell signature and leaving the Haskell one plain:
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incrExtGood :: PEq (Pos → Int) {incrPos} {incrInt}

incrExtGood :: PEq (Int → Int)

incrExtGood = xEq incrPos incrInt incrEq

xEq checks that the incrPos and incrInt ’s domains are su-
pertypes of Pos, i.e., Pos <: Int. Further it checks that the
domain of the proof incrEq is a supertype of Pos.

What might we define for incrEq? Here are three alterna-
tives. Each alternative is either accepted or rejected by xEq as
appropriate for the Pos → Int type index; each alternative
is also possible or impossible to prove. (See ğ3 for more on
how incrEq can be defined.)

-- ACCEPTED and POSSIBLE:

incrEq :: n:Pos → PEq Int {incrPos n} {incrInt n}

-- ACCEPTED and IMPOSSIBLE:

incrEq :: n:Int → PEq Int {incrPos n} {incrInt n}

-- REJECTED and POSSIBLE:

incrEq :: n:Emp → PEq Int {incrPos n} {incrInt n}

The first two alternatives, n:Pos and n:Int, will be accepted
by xEq, since both Pos and Int are supertypes of Pos... though
it is impossible to actually construct a proof for the second
alternative, i.e., a proof that incrPos n equals incrInt n for
all integers n. On the other hand, the last proof on n:Emp is
trivial, but xEq rejects it, because Emp is not a supertype of
Pos. Liquid Haskell’s checks on xEq’s type indices prevents
inconsistencies like inconsistencyII .

3. Using Function Equalities. Just as the xEq axiom
ensures that the right domains are checked and tracked for
functional extensionality, we define an axiom to ensure these
equalities are used appropriately. The axiom sEq character-
izes equality as valid under substitution, i.e., if x and y are
equal, they can be substituted in any context f and the results
f x and f y will be equal:

assume sEq :: f:(a → b) → x:a → y:a

→ PEq a {x} {y} → PEq b {f x} {f y}

The sEq axiom applies equalities in higher-order contexts.
For example, we show map incrPos equals map incrInt :

incrMapProp :: PEq ([Pos] → [Int]) {map incrPos}

{map incrInt}

incrMapProp = sEq map incrPos incrInt incrExtGood

We can more generally show that propositionally equal func-
tions produce equal results on equal inputs. The trick is to
flip the context, defining a function retract that takes as in-
put two functions f and g, a proof these functions are equal,
and an argument x, returning a proof that f x = g x:

retract :: f:(a → b) → g:(a → b)

→ PEq (a → b) {f} {g}

→ x:a → PEq b {f x} {g x}

retract f g peq x = sEq (flip x) f g peq

flip x f = f x

The retract lemma makes it easy to use function equal-
ities while still checking the domain on which the func-
tion is applied. These checks prevent inconsistencies like
inconsistencyI . For instance, we can try to retract the func-
tional equality incrExtGood to a bad and a good input.

-- REJECTED:

badFO :: PEq Int {incrPos 0} {incrInt 0}

badFO = retract incrPos incrInt incrExtGood 0

-- ACCEPTED

goodFO :: x:{Int | 42 < x }

→ PEq Int {incrPos x} {incrInt x}

goodFO x = retract incrPos incrInt incrExtGood x

Liquid Haskell rejects the bad input in badFO: the number 0
isn’t in the Pos domain on which incrExtGood was proved.
Liquid Haskell accepts the good input in goodFO , since any x

greater than 42 is certainly positive. The goodFO proof yields
a first-order equality on any such x, here on Int. Such first or-
der equalities correspond neatly with the notion of equality
used in the SMT solvers that buttress all of Liquid Haskell’s
reasoning. (For more information on how SMT equality re-
lates to notions of equality in Liquid Haskell, see ğ3. For
an example of how these first-order equalities can lead to
runtime optimizations, see ğ4.5.)

3 PEq: a Type Indexed Equality
Axiomatized with Extensional Equality

We define the PEq library in Liquid Haskell, implementing
the type-indexed propositional equality, also called PEq. First,
we axiomatize equality for base types in the AEq typeclass
(ğ3.1). Next, we define propositional equality for base and
function types with the PEq data type (ğ3.2). Axioms on PEq

enforce the typing rules of our formal model (ğ5), but we also
prove some of the metatheory in Liquid Haskell itself (ğ3.3).
Finally, we discuss how AEq and PEq interact with Haskell’s
and SMT’s equalities (ğ3.4).

3.1 The AEq Typeclass, for Axiomatized Equality

We begin by axiomatizing equality that can be ported to SMT:
equivalence relations that imply SMT equality. We use refine-
ments on typeclasses [22] to define a typeclass AEq, which
contains the (operational, Bool-returning, SMT-coinciding)
equality method ≡, three methods that encode the equality
laws, and one method that encodes correspondence with
SMT equality.

class AEq a where

(≡) :: x:a → y:a → Bool

reflP :: x:a → {𝑥 ≡ 𝑥}
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-- (1) Plain Haskell Definitions

data PBEq a = PBEq

bEq :: AEq a ⇒ a → a → () → PBEq a

bEq = (const . const . const) PBEq

xEq :: (a → b) → (a → b) → (a → PEq b)

→ PBEq (a → b)

xEq = (const . const . const) PBEq

sEq :: (a → b) → a → a → PBEq a → PBEq b

sEq = (const . const . const . const) PBEq

-- (2) Uninterpreted equality between e1 and e2

type PEq a e1 e2 = {v:PBEq a | e1 ⋍ e2}

measure (⋍) :: a → a → Bool

-- (3) Axiomatization of PEq

assume bEq :: AEq a ⇒ x:a → y:a → {v:() | 𝑥 ≡ 𝑦}

→ PEq a {x} {y}

assume xEq :: f:(a → b) → g:(a → b)

→ (x:a → PEq b {f x} {g x})

→ PEq (a → b) {f} {g}

assume sEq :: f:(a → b) → x:a → y:a

→ PEq a {x} {y} → PEq b {f x} {f y}

Figure 1. Implementation of the propositional equality PEq.

symmP :: x:a → y:a → { 𝑥 ≡ 𝑦 ⇒ 𝑦 ≡ 𝑥 }

transP :: x:a → y:a → z:a

→ { (𝑥 ≡ 𝑦 && 𝑦 ≡ 𝑧) ⇒ 𝑥 ≡ 𝑧 }

smtP :: x:a → y:a → { 𝑥 ≡ 𝑦 } → { x = y }

An instance of AEq defines the method (≡) and provides
explicit proofs that it is an equivalence relation (reflP , symmP ,
and transP resp.). The instance must also show (smtP) that
(≡) implies SMT equality, namely, structural equality2.

3.2 The PBEq Data Type and its PEq Axiomatization

We use AEq to define our type-indexed propositional equality
PEq a {e1} {e2} in three steps (Figure 1): (1) structure as a
Haskell definitions, (2) definition of the refined type PEq, and
(3) axiomatization of equality using refinement types.

First, we define the structure of our proofs of equality as
PBEq, an unrefined single constructor data type (Figure 1, (1)).
The plain data type defines the structure of derivations in our
propositional equality (i.e., which proofs are well formed),
but none of the constraints on derivations (i.e., which proofs
are valid). There are three functions that generate a propo-
sitional equality: using an AEq instance (bEq); using funext

2The three axioms of equality alone are not enough to ensure SMT’s struc-
tural equality, e.g., one can define an instance x ≡ y = True which satisfies
the equality laws, but does not correspond to SMT equality.

(xEq); and using substitutivity (sEq). All these functions are
defined using const _ x = x to simply ignore their argu-
ments and return the unique PBEq constructor.

Next, we define the refinement type PEq to be our proposi-
tional equality (Figure 1, (2)). Two terms e1 and e2 of type a

are propositionally equal when (a) there is a well formed and
valid PBEq proof and (b) we have e1 ⋍ e2, where (⋍) is an
uninterpreted SMT function, i.e., a purely symbolic function
about which SMT knows nothing. Liquid Haskell uses curly
braces for expression arguments in type applications, e.g., in
PEq a {x} {y}, x and y are expressions, but a is a type.
Finally, we use assumptions to axiomatize the uninter-

preted (⋍) and generate proofs of PEq (Figure 1, (3)). Each
function from (1) is refined to return something of type PEq,

where PEq a {e1} {e2} means that terms e1 and e2 are
considered equal at type a. bEq constructs proofs that two
terms, x and y of type a, are equal when 𝑥 ≡ 𝑦 according
to the AEq instance for a. xEq is the (type-indexed) funext
axiom. Given functions f and g of type a → b, a proof of
equality via extensionality also needs a PEq-proof that f x

and g x are equal for all x of type a. Such a proof has re-
fined type x:a → PEq b {f x} {g x}. Critically, we don’t
lose any type information about f or g! sEq implements sub-
stitutivity closure: for an arbitrary context with an a-shaped
hole (f :: a → b) and for any x and y of type a that are
equalÐi.e., PEq a {x} {y}Ðfilling the context with x and y

yields equal results, i.e., PEq b {f x} {g y}.

Example. AEq and bEq suffice to prove incrEq from ğ2:

incrEq :: x:Pos → PEq Int {incrPos x} {incrInt x}

incrEq x = bEq (incrPos x) (incrInt x)

(reflP (incrPos x))

We start from reflP (incrPos x) :: {incrPos x ≡ incrPos

x}, since x is positive, the SMT derives incrPos x = incrInt

x, generating the AEq proof term {incrPos x ≡ incrInt x},
which, in turn, is passed to the bEq axiom.

3.3 Equivalence Properties and Classy Induction

We prove the metaproperties of the actual implementation
of PEqÐreflexivity, symmetry, and transitivityÐwithin Liq-
uid Haskell itself, by induction on types. But łinductionž in
Liquid Haskell means writing a recursive function, which
necessarily has a single, fixed type. To express that PEq is
reflexive, we want a Liquid Haskell theorem refl :: x:a

→ PEq a {x} {x}, but its proof goes by induction on the
type a, which is not possible in ordinary Haskell functions3.
The essence of our proofs is a folklore method we call

classy induction (see ğ6 for the history). To prove a theo-
rem using classy induction on PEq, one must: (1) define a
typeclass with a method whose refined type corresponds

3A variety of GHC extensions allow case analysis on types (e.g., type families
and generics), but, unfortunately, Liquid Haskell doesn’t support such fancy
type-level programming.
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to the theorem; (2) prove the base case for types with AEq

instances; and (3) prove the inductive case for function types,
where typeclass constraints on smaller types generate in-
ductive hypotheses. All three of our proofs follow this pat-
tern. For example, for reflexivity (shown below): (1) the
typeclass Reflexivity simply states the desired theorem
type refl :: x:a → PEq a {x} {x}; (2) given an AEq a in-
stance, bEq and the reflP method are combined to define
the refl method; and (3) xEq can show that f is equal to
itself by using the refl instance from the codomain con-
straint: the Reflexivity b constraint generates a method
refl :: x:b → PEq b {x} {x}. The codomain constraint
Reflexivity b corresponds exactly to the inductive hypoth-
esis on the codomain: we are doing induction!

{-# LANGUAGE FlexibleInstances #-}

{-# LANGUAGE UndecidableInstances #-}

-- (1) Refined typeclass

class Reflexivity a where

refl :: x:a → PEq a {x} {x}

-- (2) Base case (AEq types)

instance AEq a ⇒ Reflexivity a where

refl a = bEq a a (reflP a)

-- (3) Inductive case (function types)

instance Reflexivity b ⇒ Reflexivity (a→b) where

refl f = xEq f f (\a → refl (f a))

At compile time, any use of refl xwhen x has type a asks the
compiler to find a Reflexivity instance for a. If a has an AEq
instance, the proof of refl xwill simply be bEq x x (reflP

a). If a is a function of type b → c, then the compiler will
try to find a Reflexivity instance for the codomain cÐand
if it finds one, generate a proof using xEq and c’s proof. The
compiler’s constraint resolver does the constructive proof
for us, assembling the ‘inductive tower’ to give us a refl for
our chosen type. That is, even though Liquid Haskell can’t
mechanically check that our inductive proofs are in general
complete (i.e., the base and inductive cases cover all types),
our refl proofs will work for types where the codomain
bottoms out with an AEq instance, i.e., any type consisting
of functions and AEq-equable types.

Our proofs of symmetry and transitivity follow the same
pattern and can be found in our implementation.

3.4 Interaction of the Different Equalities

We have four equalities in our system (Figure 2): SMT equal-
ity (=), the (≡) method of the AEq typeclass (ğ3.1), the refined
PEq (ğ3.2), and the (==) method of Haskell’s Eq typeclass.

SMT Equality. The single equal sign (=) represents SMT
equality, which satisfies the three equality axioms and is syn-
tactically defined for data types. The SMT-LIB standard [6]
permits the equality symbol on functions but does not specify

Figure 2. The four equalities and their interactions. Haskell
equality in red to highlight its potential unsoundness.

its behavior. Implementations vary. CVC4 allows for func-
tional extensionality and higher-order reasoning [5]. When
Z3 compares functions for equality, it treats them as arrays,
using the extensional array theory to incompletely perform
the comparison. When asked if two functions are equal, Z3
typically answers unknown . To avoid this unpredictability,
our system avoids SMT equality on functions.

Interactions of Equalities. SMT equalities are internally
generated by Liquid Haskell using the reflection and PLE tac-
tic of Vazou et al. [43] (see also ğ4.1). An 𝑒1 ≡ 𝑒2 equality can
be generated in three ways: (1) If SMT can prove an equality
𝑒1 = 𝑒2, then the reflexivity reflP method can generate that
equality, i.e., reflP 𝑒1 proves 𝑒1 ≡ 𝑒1, which is enough to
show 𝑒1 ≡ 𝑒2. (2) Our system provides AEq instances for the
primitive Haskell types using the Haskell equality that we
assume satisfies the four laws, e.g., the instance AEq Int is
provided. (3) Using refinements in typeclasses [22] one can
explicitly define instances of AEq, which may or may not
coincide with Haskell Eq instances. Axioms generate PEq

proofs, bottoming out at AEq, as in bEq combined with an
AEq term and xEq or sEq combined with other PEq terms.

Finally, we define a mechanism to convert PEq into an
SMT equality. This conversion is useful when we want to
derive an equality 𝑓 𝑒 = 𝑔 𝑒 from a function equality PEq (a

→ b) {f} {g} (see ğ4.5). The derivation requires that the
domain b admits the axiomatized equality, AEq. To capture
this requirement we define toSMT that converts PEq to SMT
equality as amethod of a class that requires an AEq constraint:

class AEq a ⇒ SMTEq a where

toSMT :: x:a → y:a → PEq a {x} {y} → {x = y}

A Separate Equality. Liquid Haskell maps Haskell’s (==)
to SMT equality by default. It is surely unsound to do so, as
users can define Eq instances with arbitrarily bad (==) meth-
ods. To avoid this built-in unsoundness, our implementation
and case studies don’t directly use Haskell’s equality.
The interactions of the four equalities justify using AEq

instances, instead of the standard reflexivity, as the base case
of PEq. We only want to convert Haskell equalities to PEq

when they are safe for SMT, i.e., equalities that satisfy AEq.

Equivalence Relation Axioms. Each of the four equali-
ties has a different relationship to the equivalence relation
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axioms (reflexivity, symmetry, transitivity). AEq comes with
explicit proof methods that capture the axioms. For PEq, we
prove them using classy induction (ğ3.3). For SMT equality,
we simply trust implementation of the underlying solver.
For Haskell’s equality, there’s no general way to enforce the
equality axioms, though users can choose to prove them.

Computability. Finally, the Eq and AEq classes define
the computable equalities used in programs, (==) and (≡)

respectively. The PEq equality only contains proof terms,
while the SMT equality lives entirely inside the refinements;
neither can be meaningfully used in programs.

4 Examples and Case Study

To showcase the proposed propositional equality PEq for
Liquid Haskell, we start bymoving from first-order equalities
to equalities between functions (reverse , ğ4.1). Next, we
show how PEq’s type indices reason about refined domains
and dependent codomains of functions (incr, ğ4.2). Proofs
about higher-order functions demonstrate the contextual
equivalence axiom in single- (map, ğ4.3) and multi-argument
functions (foldl , ğ4.4). Finally, we show how a PEq proof
can be used to reason about optimization correctness (spec,
ğ4.5) and we prove associativity of the reader monad (ğ4.6).

4.1 Reverse: From First- to Higher-Order Equality

Consider three candidate list-reversal implementations (Fig-
ure 3, top): a ‘slow’ quadratic one that recursively appends
to the right, a ‘fast’ one in accumulator-passing style, and a
‘bad’ one that returns the original list.

First-Order Proofs. The reverseEq theorem neatly re-
lates the two correct list reversals (Figure 3, middle). It is a
corollary of a lemma and rightId , which shows that [] is a
right identity for the list concatenation operator, (++). The
lemma characterizes the core induction, relating the accumu-
lating fastGo and the direct slow. The lemma itself uses the
inductive lemma assoc to show associativity of (++). All the
equalities in the first order statements use the SMT equal-
ity, since they are automatically proved by Liquid Haskell’s
reflection and PLE tactic [43].

Higher-Order Proofs. Plain SMT equality isn’t enough
to prove that fast and slow are themselves equal. We need
the functional extensionality axiom xEq.

reverseHO :: PEq ([a] → [a]) {fast} {slow}

reverseHO = xEq fast slow reversePf

The job of the reversePf lemma is to prove fast xs propo-
sitionally equal to slow xs for all xs:

reversePf :: xs:[a] → PEq [a] {fast xs} {slow xs}

We can use two different styles to construct such a proof.

Style 1: Lifting First-Order Proofs. Using the bEq axiom
and the reflexivity property of AEq, we can lift the first order
equality proof reverseEq into a propositional equality:

reversePf1 :: AEq [a] ⇒ xs:[a]

→ PEq [a] {fast xs} {slow xs}

reversePf1 xs = bEq (fast xs) (slow xs)

(reverseEq xs ? reflP (fast xs))

Such proofs rely on SMT equality, which the reflP call turns
into axiomatized equality (AEq).

Style 2: Inductive Proofs. Alternatively, inductive proofs
can be directly performed in the propositional setting, elim-
inating the AEq constraint (though any use of such proofs
requires AEq a). To give a sense of what these proofs are like,
we translate lemma into lemmaP :

lemmaP :: (Transitivity [a], Reflexivity [a])

⇒ l:[a] → xs:[a]

→ PEq [a] {fastGo l xs} {slow xs ++ l}

lemmaP l [] = refl l

lemmaP l (x:xs) =

trans (fastGo l (x:xs)) (slow xs ++ (x:l))

(slow (x:xs) ++ l)

(lemmaP (x:l) xs) (assocP (slow xs) [x] l)

The proof goes by induction and uses the Reflexivity and
Transitivity properties of PEq encoded as typeclasses (ğ3.3),
along with assocP and rightIdP , the propositional versions
of assoc and rightId (not shown). These typeclass con-
straints propagate to the reverseHO proof, via reversePf2 .

reversePf2 :: (Transitivity [a]) ⇒ xs:[a]

→ PEq [a] {fast xs} {slow xs}

reversePf2 xs =

trans (fast xs) (slow xs ++ []) (slow xs)

(lemmaP [] xs) (rightIdP (slow xs))

We could not use any of these styles to generate a bad
(non-)proof: neither PEq ([a] → [a]) {fast} {bad} nor PEq
([a] → [a]) {slow} {bad} are provable.

4.2 Succ: Refined Domains and Dependent

Codomains

Our propositional equality PEq naturally reasons about func-
tions with refined domains and dependent codomains. For
example, recall the functions incrInt and incrPos from ğ2:

incrInt, incrPos :: Int → Int

incrInt n = n + 1

incrPos n = if 0 < n then n + 1 else 0

In ğ2 we proved that the two functions are equal on the
domain of positive numbers:

type Pos = {x:Int | 0 < x }

posDom :: PEq (Pos → Int) {incrInt} {incrPos}

posDom = xEq incrInt incrPos $ \x →
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Two correct and one wrong implementations of reverse

slow, bad, fast :: [a] → [a]

slow [] = []

slow (x:xs) = slow xs ++ [x]

bad xs = xs

fast xs = fastGo [] xs

fastGo :: [a] → [a] → [a]

fastGo acc [] = acc

fastGo acc (x:xs) = fastGo (x:acc) xs

First-Order Theorems relating fast and slow

reverseEq :: xs:[a] → { fast xs = slow xs }

lemma :: xs:[a] → ys:[a] → {fastGo ys xs = slow xs ++ ys}

assoc :: xs:[a] → ys:[a] → zs:[a] → { (xs ++ ys) ++ zs = xs ++ (ys ++ zs) }

rightId :: xs:[a] → { xs ++ [] = xs }

Proofs of the First-Order Theorems

reverseEq x = lemma x [] ? rightId (slow x)

lemma [] _ = ()

lemma (a:x) y = lemma x (a:y) ? assoc (slow x) [a] y

x ? _pf = x

rightId [] = ()

rightId (_:x) = rightId x

assoc [] _ _ = ()

assoc (_:x) y z = assoc x y z

Figure 3. Reasoning about list reversal.

bEq (incrInt x) (incrPos x) (reflP (incrInt x))

We can also reason about how each function’s domain affects
its codomain. For example, we can prove that these functions
are equal and they take Pos inputs to natural numbers.

posRng :: PEq (Pos → {v:Int | 0 ≤ v})

{incrInt} {incrPos}

posRng = xEq incrInt incrPos $ \x →

bEq (incrInt x) (incrPos x) (reflP (incrInt x))

Finally, we can prove properties of the function’s codomain
that depend on the inputs. Below we show that on positive
arguments, the result is always increased by one.

type SPos x = {v:Pos | v = x + 1}

depRng :: PEq (x:Pos → SPos {x})

{incrInt} {incrPos}

depRng = xEq incrInt incrPos $ \x →

bEq (incrInt x) (incrPos x) (reflP (incrInt x))

4.3 Map: Putting Equality in Context

Our propositional equality can be used in higher order set-
tings; here, we prove that if two functions f and g are propo-
sitionally equal, then map f and map g are also equal. Our
proofs use the substitutivity axiom sEq.

Equivalence on the Last Argument. Direct application
of sEq ports a proof of equality to the first argument of the
context (a function). For example, mapEqP below states that
if two functions f and g are equal, then so are the partially
applied functions map f and map g.

mapEqP :: f:(a → b) → g:(a → b)

→ PEq (a → b) {f} {g}

→ PEq ([a] → [b]) {map f} {map g}

mapEqP f g pf = sEq map f g pf

Equivalence on an Arbitrary Argument. To show that
map f xs and map g xs are equal for all xs, we use sEq with
flipMap , i.e., a context that puts f and g in a ‘flipped’ context.

mapEq :: f:(a → b) → g:(a → b)

→ PEq (a → b) {f} {g} → xs:[a]

→ PEq [b] {map f xs} {map g xs}

mapEq f g pf xs = sEq (flipMap xs) f g pf

? fMapEq f xs ? fMapEq g xs

fMapEq :: f:_ → xs:[a] → {map f xs = flipMap xs f}

fMapEq f xs = ()

flipMap xs f = map f xs

The mapEq proof simply calls sEq with the flipped context
and needs to know that map f xs = flipMap xs f. Liquid
Haskell won’t infer this fact on its own in the higher order
setting of this proof; we explicitly provide this evidence with
the calls to fMapEq . Finally, we use the posDom proof (ğ4.2)
to show how to reuse proofs with map:

client :: xs:[Pos] →

PEq [Int] {map incrInt xs} {map incrPos xs}

client = mapEq incrInt incrPos posDom

clientP :: PEq ([Pos] → [Int]) {map incrInt}

{map incrPos}

clientP = mapEqP incrInt incrPos posDom
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client proves that map incrInt xs is equal to map incrPos

xs for each list xs of positive numbers, while clientP proves
that the partially applied functions map incrInt and map

incrPos are equal on lists of positive numbers.

4.4 Fold: Equality of Multi-Argument Functions

As an example of equality proofs on multi-argument func-
tions, we show that the directly tail-recursive foldl is equal
to foldl', a foldr encoding of a left-fold via CPS. The first-
order equivalence theorem is expressed as follows:

thm :: f:(b → a → b) → b:b → xs:[a]

→ { foldl f b xs = foldl' f b xs }

We lift the first-order property into a multi-argument func-
tion equality by using xEq for all but the last arguments and
bEq for the last, as below:

foldEq :: AEq b ⇒ PEq ((b → a → b) → b → [a]

→ b) {foldl} {foldl'}

foldEq = xEq foldl foldl' $ \f →

xEq (foldl f) (foldl' f) $ \b →

xEq (foldl f b) (foldl' f b) $ \xs →

bEq (foldl f b xs) (foldl' f b xs)

(thm f b xs ? reflP (foldl f b xs))

One can avoid the first-order proof and the AEq constraint,
by using the second, typeclass-oriented style of ğ4.1 (see our
implementation for details).

4.5 Spec: Function Equality for Program Efficiency

Function equality can be used to prove optimizations sound.
For example, consider a critical function that, for safety,
can only run on inputs that satisfy a specification spec, and
fastSpec , a fast implementation to check spec.

spec, fastSpec :: a → Bool

critical :: x:{a | spec x} → a

A client function can soundly call critical for any input
x by performing the runtime fastSpec x check, given a PEq

proof that the functions fastSpec and spec are equal.

client :: PEq _ {fastSpec} {spec} → a → Maybe a

client pf x =

if fastSpec x ? toSMT (fastSpec x) (spec x)

(sEq (\x f → f x) fastSpec spec pf)

then Just (critical x)

else Nothing

The toSMT call generates the SMT equality that fastSpec x

= spec x, which, combined with the branch condition check
fastSpec x, lets the path-sensitive refinement type checker
decide that the call to critical x is safe in the then branch.

Our propositional equality (1) co-exists with practical fea-
tures of refinement types, e.g., path sensitivity, and (2) can
help optimize executable code.

4.6 Associativity of Reader Monads

A reader is a function with a fixed domain r, i.e., the partially
applied type Reader r (Figure 4, top left). Readers form a
monad and are a popular way of defining and composing
functions that take some fixed information, like command-
line arguments or configuration files. We used propositional
equality to prove that the Reader monad satisfies the stan-
dard functor, applicative, and monad laws. Here we present
the associativity proof due to space constraints.
The monad instance for the reader type is defined using

function composition (Figure 4, top). We also define Kleisli
composition of monads as a convenience for specifying the
monad. We express associativity using a refinement type and
prove it using transitivity (Figure 4, bottom).

Proof by Associativity and Error Locality. In our asso-
ciativity proof we use Haskell’s let syntax to name the left
(el) and right (er) expressions; our goal is to construct the
proof PEq _ {el} {er}. To do so, we pick an intermediate
term em; we attempt an equivalence proof as follows:

trans el em er

(refl el) -- proof of el = em; local error

(trans em emr er -- proof of em = er

(refl em) -- proof of em = emr

(refl emr)) -- proof of emr = er

This proving style comes with the great benefit of error
locality. The refl el proof above will produce a type error;
replacing that proof with an appropriate trans to connect
el and em via eml completes the monadAssociativity proof
(Figure 4, bottom). Writing proofs in this trans/refl style
works well: start with refl and where the SMT solver can’t
figure things out, a local refinement type error tells you to
expand with trans (or look for a counterexample).

5 A Refinement Calculus with Built-in
Type-Indexed Equality

Because funext is inconsistent in Liquid Haskell (ğ2), we
defined and axiomatized the type PEq to reason consistently
about extensional equality (ğ3). We are able to prove inter-
esting properties (ğ4) and Liquid Haskell’s type checking
seems to be doing the right thing. But how do we know that
our definitions suffice? Formalizing all of Liquid Haskell is a
challenge: we build a model to check our novel features. We
formalize a core calculus 𝜆𝑅𝐸 with refinement types, seman-
tic subtyping, and type-indexed propositional equality.
𝜆𝑅𝐸 contains just enough to check the core interactions

between refinement types and a type-indexed propositional
equality resembling our PEq definition (ğ5.1). We omit plenty
of important features from Liquid Haskell (e.g., algebraic data
types, polymorphism): our purpose here is not to develop
a complete formal model, but to check that our implemen-
tation holds together. Using 𝜆𝑅𝐸 ’s static semantics (ğ5.2),
we prove several metatheorems (ğ5.3). Most importantly, a
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Monad Instance for Readers

type Reader r a = r → a

kleisli :: (a → Reader r b)

→ (b → Reader r c)

→ a → Reader r c

kleisli f g x = bind (f x) g

pure :: a → Reader r a

pure a _r = a

bind :: Reader r a → (a → Reader r b) → Reader r b

bind fra farb = \r → farb (fra r) r

Associativity of Reader Monads

monadAssociativity :: (Transitivity c, Reflexivity c)

⇒ m:(Reader r a) → f:(a → Reader r b) → g:(b → Reader r c)

→ PEq (Reader r c) {bind (bind m f) g} {bind m (kleisli f g)}

monadAssociativity m f g = xEq (bind (bind m f) g) (bind m (kleisli f g)) $ \r →

let { el = bind (bind m f) g r ; eml = g (bind m f r) r ; em = (bind (f (m r)) g) r

; emr = kleisli f g (m r) r ; er = bind m (kleisli f g) r }

in trans el em er (trans el eml em (refl el) (refl eml)) (trans em emr er (refl em) (refl emr))

Figure 4. Case study: Reader Monad Proofs.

𝑐 ::= true | false | unit | (==𝑏 ) | (==(𝑐,𝑏 ) )

𝑒 ::= 𝑐 | 𝑥 | 𝑒 𝑒 | 𝜆𝑥 :𝜏 . 𝑒 | bEq𝑏 𝑒 𝑒 𝑒 | xEq𝑥 :𝜏→𝜏 𝑒 𝑒 𝑒

𝑣 ::= 𝑐 | 𝜆𝑥 :𝜏 . 𝑒 | bEq𝑏 𝑒 𝑒 𝑣 | xEq𝑥 :𝜏→𝜏 𝑒 𝑒 𝑣

𝑟 ::= 𝑒

𝑏 ::= Bool | ()

𝜏 ::= {𝑥 :𝑏 | 𝑟 } | 𝑥 :𝜏 → 𝜏 | PEq𝜏 {𝑒} {𝑒}

E ::= • | E 𝑒 | 𝑣 E | bEq𝑏 𝑒 𝑒 E | xEq𝑥 :𝜏→𝜏 𝑒 𝑒 E

Γ ::= ∅ | Γ, 𝑥 : 𝜏

𝜃 ::= ∅ | 𝜃, 𝑥 ↦→ 𝑣

𝛿 ::= ∅ | 𝛿, (𝑣, 𝑣)/𝑥

Reduction 𝑒 ↩→ 𝑒

E[𝑒] ↩→ E[𝑒′], if 𝑒 ↩→ 𝑒′

(𝜆𝑥 :𝜏 . 𝑒) 𝑣 ↩→ 𝑒 [𝑣/𝑥]

(==𝑏 ) 𝑐1 ↩→ (==(𝑐1,𝑏 ) )

(==(𝑐1,𝑏 ) ) 𝑐2 ↩→ 𝑐1 = 𝑐2, syntactic equality on constants

Figure 5. Syntax and Dynamic Semantics of 𝜆𝑅𝐸 .

logical relation characterizes 𝜆𝑅𝐸 equivalence and reflects
𝜆𝑅𝐸 ’s propositional equality. Propositional equivalence in
𝜆𝑅𝐸 implies equivalence in the logical relation (Theorem 5.3);
both are reflexive, symmetric, and transitive (Theorems 5.1
and 5.2). Full details are in the extended version [42].

5.1 Syntax and Operational Semantics of 𝜆𝑅𝐸

We present 𝜆𝑅𝐸 , a core calculus with 𝑅efinement types and
type-indexed 𝐸quality (Figure 5). The core is standard CBV
lambda calculus, extended with booleans and units. We add
two primitives for proofs of propositional equality: bEq𝑏 and
xEq𝑥 :𝜏𝑥→𝜏 construct proofs of equality at base and function

types, respectively. Equality proofs take three arguments:
the two expressions equated and a proof of their equality;
proofs at base type are trivial, of type (), but higher types use
functional extensionality. These two primitives correspond
to bEq and xEq axioms of ğ3.We did not encode substitutivity,
since it could be derived in our metatheory by induction on
expressions. We have the axiom in Haskell, though, where
we can only do (classy) induction on types.

𝜆𝑅𝐸 only refines basic types, booleans and unit; it uses
dependent function types 𝑥 :𝜏𝑥 → 𝜏 with arguments of type 𝜏𝑥
and result type 𝜏 , where 𝜏 can refer back to the argument 𝑥 .
We add the propositional equality type PEq𝜏 {𝑒𝑙 } {𝑒𝑟 }, which
denotes a proof of equality between the two expressions 𝑒𝑙
and 𝑒𝑟 of type 𝜏 . We write 𝑏 to mean the trivial refinement
type {𝑥 :𝑏 | true}. We omit polymorphic types to simplify
the metatheory [32]. We define function extensionality as a
family of primitives xEq, one for each refinement function
type, capturing the essence of polymorphic function equality.

The relation · ↩→ · evaluates 𝜆𝑅𝐸 expressions using small
step, call-by-value semantics (Figure 5, bottom; · ↩→∗ · is
its reflexive, transitive closure). The semantics are standard;
bEq𝑏 and xEq𝑥 :𝜏𝑥→𝜏 evaluate proofs but not equated terms.

5.2 Static Semantics of 𝜆𝑅𝐸

𝜆𝑅𝐸 ’s static semantics has two parts: typing judgments (ğ5.2.1)
and a binary logical relation capturing equivalence (ğ5.2.2).

5.2.1 Typing of 𝜆𝑅𝐸 . Type checking in 𝜆𝑅𝐸 uses three mu-
tually recursive judgments (Figure 6): type checking, Γ ⊢ 𝑒 :: 𝜏 ,
for when 𝑒 has type 𝜏 in Γ; well formedness, Γ ⊢ 𝜏 , for when
𝜏 is well formed in Γ; and subtyping, Γ ⊢ 𝜏𝑙 ⪯ 𝜏𝑟 , for when
𝜏𝑙 is a subtype of 𝜏𝑟 in Γ.

Beyond the conventional rules for refinement type sys-
tems [18, 29, 30], the interesting rules are concerned with
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Type checking (equality rules) Γ ⊢ 𝑒 :: 𝜏

Γ ⊢ 𝑒𝑙 :: 𝜏𝑙 Γ ⊢ 𝜏𝑙 ⪯ {𝑥 :𝑏 | true}

Γ ⊢ 𝑒𝑟 :: 𝜏𝑟 Γ ⊢ 𝜏𝑟 ⪯ {𝑥 :𝑏 | true}

Γ, 𝑙 : 𝜏𝑙 , 𝑟 : 𝜏𝑟 ⊢ 𝑒 :: {𝑥 :() | 𝑙 ==𝑏 𝑟 }

Γ ⊢ bEq𝑏 𝑒𝑙 𝑒𝑟 𝑒 :: PEq𝑏 {𝑒𝑙 } {𝑒𝑟 }
TEqBase

Γ ⊢ 𝜏𝑟 ⪯ 𝑥 :𝜏𝑥 → 𝜏 Γ ⊢ 𝜏𝑙 ⪯ 𝑥 :𝜏𝑥 → 𝜏
Γ ⊢ 𝑒𝑙 :: 𝜏𝑙 Γ ⊢ 𝑒𝑟 :: 𝜏𝑟 Γ ⊢ 𝑥 :𝜏𝑥 → 𝜏
Γ, 𝑙 : 𝜏𝑙 , 𝑟 : 𝜏𝑟 ⊢ 𝑒 :: (𝑥 :𝜏𝑥 → PEq𝜏 {𝑙 𝑥} {𝑟 𝑥})

Γ ⊢ xEq𝑥 :𝜏𝑥→𝜏 𝑒𝑙 𝑒𝑟 𝑒 :: PEq𝑥 :𝜏𝑥→𝜏 {𝑒𝑙 } {𝑒𝑟 }
TEqFun

Subtyping (all rules) Γ ⊢ 𝜏 ⪯ 𝜏

∀𝜃 ∈ [|Γ |] , [|𝜃 · {𝑥 :𝑏 | 𝑟 }|] ⊆ [|𝜃 · {𝑥 ′:𝑏 | 𝑟 ′}|]

Γ ⊢ {𝑥 :𝑏 | 𝑟 } ⪯ {𝑥 ′:𝑏 | 𝑟 ′}
SBase

Γ ⊢ 𝜏 ′𝑥 ⪯ 𝜏𝑥 Γ, 𝑥 : 𝜏 ′𝑥 ⊢ 𝜏 ⪯ 𝜏 ′

Γ ⊢ 𝑥 :𝜏𝑥 → 𝜏 ⪯ 𝑥 :𝜏 ′𝑥 → 𝜏 ′
SFun

Γ ⊢ 𝜏 ⪯ 𝜏 ′ Γ ⊢ 𝜏 ′ ⪯ 𝜏

Γ ⊢ PEq𝜏 {𝑒𝑙 } {𝑒𝑟 } ⪯ PEq𝜏 ′ {𝑒𝑙 } {𝑒𝑟 }
SEq

Figure 6. Typing of 𝜆𝑅𝐸 (selected rules about equality).

equality (TEqBase, TEqFun). We assign selfified types to
true, false, and unit (e.g., {𝑥 :Bool | 𝑥 ==Bool true}) [29].
Equality is given a similarly reflective type, with TyCon(==𝑏)
defined as 𝑥 :𝑏 → 𝑦:𝑏 → {𝑧:Bool | 𝑧 ==Bool (𝑥 ==𝑏 𝑦)}. The
rule TEqBase assigns to the expression bEq𝑏 𝑒𝑙 𝑒𝑟 𝑒 the type
PEq𝑏 {𝑒𝑙 } {𝑒𝑟 }. To do so, we guess types 𝜏𝑙 and 𝜏𝑟 that fit 𝑒𝑙
and 𝑒𝑟 , respectively. Both these types should be subtypes of
𝑏 that are strong enough to derive that if 𝑙 : 𝜏𝑙 and 𝑟 : 𝜏𝑟 , then
the proof argument 𝑒 has type {_:() | 𝑙 ==𝑏 𝑟 }. Our formal
model allows checking of strong, selfified types, but does
not define an algorithmic procedure to generate them. In
Liquid Haskell, type inference [30] automatically and algo-
rithmically derives such strong types. We don’t bother with
inference: formally, we can guess any type that inference
can derive.
The rule TEqFun gives the expression xEq𝑥 :𝜏𝑥→𝜏 𝑒𝑙 𝑒𝑟 𝑒

type PEq𝑥 :𝜏𝑥→𝜏 {𝑒𝑙 } {𝑒𝑟 }. As in TEqBase, we guess strong
types 𝜏𝑙 and 𝜏𝑟 to stand for 𝑒𝑙 and 𝑒𝑟 such that with 𝑙 : 𝜏𝑙
and 𝑟 : 𝜏𝑟 , the proof argument 𝑒 should have type 𝑥 :𝜏𝑥 →

PEq𝜏 {𝑙 𝑥} {𝑟 𝑥}, i.e., it should prove that 𝑙 and 𝑟 are exten-
sionally equal. We require that the index 𝑥 :𝜏𝑥 → 𝜏 is well
formed as technical bookkeeping.

As is common in refinement type systems, we use subtyp-
ing instead of conversion. SEq reduces subtyping of equality
types to subtyping of the type indices, while the expressions
to be equated remain unchanged. Covariant treatment of
the type index would suffice for our metatheory, but we
treat the type index invariantly to be consistent with the
implementation, since the type index of PEq is not used in
its definition and thus treated invariantly by Liquid Haskell.

Value equivalence relation 𝑣 ∼ 𝑣 :: 𝜏 ;𝛿

𝑐 ∼ 𝑐 :: {𝑥 :𝑏 | 𝑟 };𝛿 ⇔

⊢𝐵 𝑐 :: 𝑏 ∧ 𝛿1 · 𝑟 [𝑐/𝑥] ↩→
∗ true ∧ 𝛿2 · 𝑟 [𝑐/𝑥] ↩→

∗ true

𝑣1 ∼ 𝑣2 :: 𝑥 :𝜏𝑥 → 𝜏 ;𝛿 ⇔

∀𝑣3 ∼ 𝑣4 :: 𝜏𝑥 ;𝛿. 𝑣1 𝑣3 ∼ 𝑣2 𝑣4 :: 𝜏 ;𝛿, (𝑣3, 𝑣4)/𝑥

𝑣1 ∼ 𝑣2 :: PEq𝜏 {𝑒𝑙 } {𝑒𝑟 };𝛿 ⇔ 𝛿1 · 𝑒𝑙 ∼ 𝛿2 · 𝑒𝑟 :: 𝜏 ;𝛿

Expression equivalence relation 𝑒 ∼ 𝑒 :: 𝜏 ;𝛿

𝑒1 ∼ 𝑒2 :: 𝜏 ;𝛿 ⇔

∃𝑣1𝑣2, 𝑒1 ↩→
∗ 𝑣1 ∧ 𝑒2 ↩→

∗ 𝑣2 ∧ 𝑣1 ∼ 𝑣2 :: 𝜏 ;𝛿

Open expression equivalence relation 𝛿 ∈ Γ Γ ⊢ 𝑒 ∼ 𝑒 :: 𝜏

𝛿 ∈ Γ � ∀𝑥 : 𝜏 ∈ Γ, 𝛿1 (𝑥) ∼ 𝛿2 (𝑥) :: 𝜏 ;𝛿

Γ ⊢ 𝑒1 ∼ 𝑒2 :: 𝜏 � ∀𝛿 ∈ Γ, 𝛿1 · 𝑒1 ∼ 𝛿2 · 𝑒2 :: 𝜏 ;𝛿

Figure 7. The binary logical relation defining equivalence.

Our subtyping rule allows equality proofs between func-
tions with convertible types (ğ4.2). The subtyping rule for
refinements depends on a unary logical relation, i.e., a se-
mantic typing relation [16]4. The interpretation of base-type
equalities PEq𝑏 {𝑒𝑙 } {𝑒𝑟 } includes all proofs whose first ar-
guments reduce to equal 𝑏-constants. The interpretation of
the function equality type PEq𝑥 :𝜏𝑥→𝜏 {𝑒𝑙 } {𝑒𝑟 } includes all
expressions that satisfy the basic typing and whose proof
argument produces appropriate proofs.

5.2.2 Equivalence Logical Relation for 𝜆𝑅𝐸 . We charac-
terize equivalence with a term-model binary logical relation.
We lift a relation on closed values to closed and then open
expressions (Figure 7). Instead of directly substituting in type
indices, all three relations use pending substitutions 𝛿 , which
map variables to pairs of equivalent values. The value rela-
tion 𝑣1 ∼ 𝑣2 :: 𝜏 ;𝛿 is defined as a fixpoint on types, noting
that the propositional equality on a type, PEq𝜏 {𝑒1} {𝑒2}, is
structurally larger than the type 𝜏 . Two proofs of equality
are equivalent when the two equated expressions are equiv-
alent in the logical relation at type-index 𝜏Ðequality proofs
‘reflect’ the logical relation.

Since the equated expressions appear in the type itself,
they may be open, referring to variables in the pending sub-
stitution 𝛿 . Thus we use 𝛿 to close these expressions, using
the logical relation on 𝛿1 ·𝑒𝑙 and 𝛿2 ·𝑒𝑟 . Proofs aren’t computa-
tionally relevant in refinement typing, so the logical relation
doesn’t even inspect the proofs 𝑣1 and 𝑣2 themselves. Two
open expressions, with variables from Γ are equivalent on
type 𝜏 , written Γ ⊢ 𝑒1 ∼ 𝑒2 :: 𝜏 , iff for each 𝛿 that satisfies
Γ, we have 𝛿1 · 𝑒1 ∼ 𝛿2 · 𝑒2 :: 𝜏 ;𝛿 . Here 𝑒1, 𝑒2, and 𝜏 might

4We could probably get away with having just the binary logical relation
we use for equivalence (ğ5.2.2). We found it easier to do one metatheoretical
thing at a time.
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refer to variables in the environment Γ. We use 𝛿 to close
the expressions eagerly, while we close the type lazily.

5.3 Metaproperties: PEq is an Equivalence Relation

We show various metaproperties of 𝜆𝑅𝐸 . All the proofs, along
with type soundness, are in the extended version [42].

Theorem 5.1 (LR is an Equivalence). Γ ⊢ 𝑒1 ∼ 𝑒2 :: 𝜏 is

reflexive, symmetric, and transitive.

Our relation is an equivalence. Transitivity requires reflexiv-
ity on 𝑒2, so we assume that Γ ⊢ 𝑒2 :: 𝜏 .

Theorem 5.2 (PEq is an Equivalence). For all 𝜏 that do not
contain equalities themselves:

• Reflexivity: If Γ ⊢ 𝑒 :: 𝜏 , then there exists 𝑣 such that Γ ⊢ 𝑣 ::

PEq𝜏 {𝑒} {𝑒}.

• Symmetry: If Γ ⊢ 𝑣12 :: PEq𝜏 {𝑒1} {𝑒2}, then there exists 𝑣21
such that Γ ⊢ 𝑣21 :: PEq𝜏 {𝑒2} {𝑒1}.

• Transitivity: If Γ ⊢ 𝑣12 :: PEq𝜏 {𝑒1} {𝑒2} and Γ ⊢ 𝑣23 ::

PEq𝜏 {𝑒2} {𝑒3} and Γ ⊢ 𝑒2 :: 𝜏 , then there exists 𝑣13 such that

Γ ⊢ 𝑣13 :: PEq𝜏 {𝑒1} {𝑒3}.

The proofs go by induction on 𝜏 . Reflexivity requires a gener-
alized the IH to find appropriate 𝜏𝑙 and 𝜏𝑟 for the PEq proofs.

Theorem 5.3 (PEq is Sound). If Γ ⊢ 𝑒 :: PEq𝜏 {𝑒1} {𝑒2}, then

Γ ⊢ 𝑒1 ∼ 𝑒2 :: 𝜏 .

The proof is a corollary of the fundamental property of the
logical relation, i.e., reflexivity.

6 Related Work

Functional Extensionality and SMT-Based Subtyping.

F∗, like Liquid Haskell, combines semantic subtyping with
SMT equality and in 2018 its developer team reported in
an (impenetrable by non refinement type experts) github
issue1 exactly the same inconsistency of the naive funext

encoding.We hope that our detailed explanation of the incon-
sistency (ğ 2) will prevent developers of similar systems re-
discovering it. As a solution [14], F∗ defines an extensionality
axiom that makes a more roundabout connection with SMT:
function equality uses ==, which is a proof-irrelevant, propo-
sitional Leibniz equality, which they assume coincides with
SMT equality. F∗’s approach requires that refined types ap-
pear as program terms, and it is not viable in Liquid Haskell,
where the Haskell compiler defines program terms knowing
nothing about refinement types. Our PEq definition does
not have the full power of F∗’s inductive definitions, but
can be implemented without changing Liquid Haskell itself.
Dafny’s SMT encoding axiomatizes extensionality for data,
but not for functions [21]. Function equality is neither prov-
able nor disprovable in their encoding into Z3. Ou et al. [29]
introduce selfification, which assigns singleton types using
equality. SAGE assigns selfified types to all variables, includ-
ing functions [19]. Dminor lacks first-class functions [7].

Equality in Dependent Type Theories. Equality in gen-
eral and functional extensionality in particular have a rich
history of study. Our work shares a common goal with
OTT [1] and cubical type theories [3, 10, 36]: we want to
assign different meanings to equality at different types. We
also use common tools, namely, funext. There the similari-
ties stop: OTT and cubical type theories are Martin-Löf type
theories, while Liquid Haskell is based on subtyping, implica-
tions resolved by SMT, and refinement of a simply typed core
(NuPRL [11] and RedPRL [2] are untyped languages with
equivalence, so they bear some similarity, too). Because of all
three of these issues, but especially because of implicit sub-
typing (i.e., without proof terms/coercions), type theoretic
approaches do not directly address our problem.

XTT [36] is perhaps the most closely related. They define
a single notion of (cubical) equality which admits extension-
ality. To use equality, they close the universe of types and
do typecase, not unlike our PEq. The details are quite dif-
ferent: XTT is a cubical type theory with a notion of proof;
in XTT, equality between𝑀 and 𝑁 is a function that maps
an interval to a path starting in 𝑀 and ending at 𝑁 . But
their typecase strategy morally resembles our PEq and the
typeclass-based approach: both dissect the universe of types
by structure, singling out functions for special treatment.
Their type-directed notion of coercion is different from how
we use equality. XTT’s coercions take a proof that𝑀 = 𝑁 and
compute, transforming𝑀 into 𝑁 . Our equalities are purely
static, computationally irrelevant, and typically bottom out
by handing off to the SMT solver. Approaches like XTT’s
may play better with F∗’s approach using dependent, induc-
tive types than the ‘flatter’ approach that we propose here.
Univalent parametricity [40] is also closely related: they use
a type-indexed notion of equivalence; their implementation
uses classy induction with the IsEquiv typeclass. We focus
on SMT interactions, while they are interested in univalence.
Dependent type theories often care about equalities be-

tween equalities, with axioms like UIP (all identity proofs
are the same), K (all identity proofs are the same, namely
refl), and univalence (identity proofs are isomorphisms, and
so not the same). F∗’s squashed equality is proof-irrelevant,
with at most one proof equating any given pair of terms. If
we allowed equalities between equalities, we could add UIP.
Our propositional equality doesn’t come with a reflexivity
constructor, so axiom K would be less natural to encode, as
it’s not obvious what to choose as the canonical proof of
equality.

Depending on the details of the theory, a refl constructor
with an extensionality axiom generates the same equality
as our type-indexed PEq. While we haven’t investigated the
metatheory, we conjecture that our proofs work when we
replace bEq with a notion of reflexivity: we need to shuffle
around AEq constraints. In F∗ and type theory, reflexivity is
a natural choice for defining equality, since dependent pat-
tern matching turns a refl constructor into Leibniz equality.
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But Liquid Haskell, by design, lacks true dependent pattern
matching: in both cases we are using an axiom. Since it’s
also important in Liquid Haskell to distinguish SMT equal-
ity from language equality (via AEq), on balance, we prefer
the type-indexed equality: it brings that distinction to the
fore, while laying the groundwork for other, more nuanced
approaches to equality (e.g., non-syntactic set equality).

Classy Induction: Inductive Proofs Using Typeclasses.

We used ‘classy induction’ to prove metaproperties of PEq
inside Liquid Haskell (ğ3.3), using ad-hoc polymorphism and
general instances to generate proofs that ‘cover’ some class
of types. We did not invent classy inductionÐit is a folklore
technique that we named.We have seen six independent uses
of łclassy inductionž in the literature [8, 13, 17, 20, 40, 45].
Any typeclass system that accommodates ad-hoc polymor-
phism and a notion of proof can use classy induction. Sozeau
[34] generates proofs of nonzeroness using something akin
to classy induction, though it goes by induction on the op-
erations used to build up arithmetic expressions in the (de-
pendent!) host language (ğ6.3.2); he calls this the ‘program-
mation logique’ aspect of typeclasses. Instance resolution is
characterized as proof search over lemmas (ğ7.1.3). Sozeau
and Oury [35] introduce typeclasses to Coq; their system can
do classy induction, but they don’t show it in the paper. Ear-
lier work on typeclasses focused on overloading [27, 28, 44],
with no notion of classy induction even with proofs [46].

Monads. Much prior work tests, reasons about, and veri-
fies monads [4, 9, 15, 23ś26, 33, 38, 39, 48]. We have only ver-
ified the correctness of a monad instance; scaling to monadic
computations is a good next step.

7 Conclusion

In a refinement type system with subtyping a naive encoding
of funext is inconsistent. We explained the inconsistency
by examples (that proved false), we implemented a type-
indexed propositional equality that avoids this inconsistency,
and validated it with a model calculus. Several case studies
demonstrate the range, effectiveness, and power of our work.
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