
A Scalable and Extensible Approach to Benchmarking NL2Code for 18
Programming Languages

Federico Cassano1, John Gouwar1, Daniel Nguyen2, Sydney Nguyen3, Luna Phipps-Costin1,
Donald Pinckney1, Ming-Ho Yee1, Yangtian Zi1, Carolyn Jane Anderson3, Molly Q Feldman4,

Arjun Guha1,5, Michael Greenberg6, Abhinav Jangda7

1 Northeastern University, 2 Hanover High School, 3 Wellesley College, 4 Oberlin College, 5 Roblox Research,
6 Stevens Institute of Technology, 7 University of Massachusetts Amherst

Abstract

Large language models have demonstrated the ability to con-
dition on and generate both natural language and program-
ming language text. Such models open up the possibility of
multi-language code generation: could code generation mod-
els generalize knowledge from one language to another? Al-
though contemporary code generation models can generate
semantically correct Python code, little is known about their
abilities with other languages. We facilitate the exploration of
this topic by proposing MultiPL-E, the first multi-language
parallel benchmark for natural-language-to-code-generation.
MultiPL-E extends the HumanEval benchmark (Chen et al.
2021) to support 18 more programming languages, encom-
passing a range of programming paradigms and popular-
ity. We evaluate two state-of-the-art code generation mod-
els on MultiPL-E: Codex (Chen et al. 2021) and InCoder
(Fried et al. 2022). We find that on several languages, Codex
matches and even exceeds its performance on Python. The
range of programming languages represented in MultiPL-E
allow us to explore the impact of language frequency and lan-
guage features on model performance. Finally, the MultiPL-
E approach of compiling code generation benchmarks to new
programming languages is both scalable and extensible. We
describe a general approach for easily adding support for new
benchmarks and languages to MultiPL-E.

1 Introduction
Advances in scaling large language models (LLMs) have im-
proved not only their ability to generate natural language
text, but also to generate code in programming languages.
LLMs exposed to code can generate test cases, documenta-
tion, and even full programs from natural language descrip-
tions (Black et al. 2022; Chen et al. 2021; Fried et al. 2022;
Nijkamp et al. 2022; Xu et al. 2022). However, relatively
little is known about how well code generation models gen-
eralize across programming languages. Most evaluation has
been done on Python, since it is the best-represented lan-
guage in most training datasets (Yin et al. 2018; Chen et al.
2021; Austin et al. 2021; Hendrycks et al. 2021).

In this paper, we present MultiPL-E, the first parallel
multi-language1 benchmark for evaluating the code gener-
ation performance of LLMs for 18 programming languages.

1In this paper, “multi-language” refers to multiple program-
ming languages.

We focus on the natural-language-to-code (NL2Code) task:
given a natural language description, generate the corre-
sponding function in code. A key feature of this task is that
its evaluation is straightforward: we can run unit tests to de-
termine if the generated function behaves correctly. There
are a handful of NL2Code benchmarks that use unit tests
in this manner (Kulal et al. 2019; Hendrycks et al. 2021;
Austin et al. 2021). But, these benchmarks only evaluate per-
formance on a single language.

MultiPL-E uses a suite of compilers to translate the
Python benchmarks from Chen et al. (2021) into parallel
benchmarks in 18 languages. For the first time, MultiPL-E
provides a way to evaluate code generation models on a con-
sistent set of benchmark problems across many languages.
The 18 languages capture a broad spectrum of language fea-
tures, application areas, and popularity, allowing us to ex-
plore the impact of these factors on model performance.

The MultiPL-E benchmark and associated tools are open
source and easy to extend. For the NL2Code task, each com-
piler translates Python unit tests, doctests, and function sig-
natures to its target language. Because these program re-
gions do not contain arbitrary Python code, each MultiPL-E
compiler is much simpler than a full-fledged compiler. Our
framework makes it easy to add new benchmark programs
and to extend the benchmark to additional languages.

We evaluate the performance of Codex (Chen et al. 2021)
and InCoder (Fried et al. 2022) on MultiPL-E. Our analy-
sis presents several insights into the effectiveness of LLMs
for code generation, including that (1) Codex performs best
on JavaScript and equally well on C++, Scala, and Type-
Script as on Python; (2) model perplexity is not strongly
correlated with the correctness of generated code; (3) type
annotations have limited impact on model performance for
gradually typed languages; (4) model performance is cor-
related with language popularity, but some niche languages
perform as well as more popular languages; and (5) perfor-
mance is sensitive to prompt design for both niche and pop-
ular languages.

Contributions Our key contributions are:

• MultiPL-E: a parallel benchmark for NL2Code in 18
languages encompassing a variety of programming
paradigms, language features, and popularity levels;

• An easily extensible system for translating NL2Code

ar
X

iv
:2

20
8.

08
22

7v
2

 [
cs

.L
G

]
 1

9
A

ug
 2

02
2

problems, including doctests, unit tests, and Python-
oriented terminology, into new programming languages;

• A multi-language parallel evaluation of two models,
Codex (Chen et al. 2021) and InCoder (Fried et al. 2022);

• Explorations of language frequency effects, the impact
of type annotations, and prompt translation sensitivity on
NL2Code performance, along with a fine-grained analy-
sis of NL2Code errors in four languages.

Our code and data is available at github.com/nuprl/
MultiPL-E

2 Evaluating Code Generation
Code generation has long been a task of interest: there is ex-
tensive work on program synthesis (Alur et al. 2013; Chaud-
huri et al. 2021) using both symbolic and neuro-symbolic
approaches. More recently, LLMs trained for text genera-
tion have demonstrated the ability to perform program com-
pletion (Brown et al. 2020; Wang and Komatsuzaki 2021;
Black et al. 2022); and several LLMs have been trained or
fine-tuned on programming language text (Feng et al. 2020;
Clement et al. 2020; Chen et al. 2021; Nijkamp et al. 2022;
Fried et al. 2022; Xu et al. 2022).

Unlike traditional program synthesis techniques, neural
language models are able to condition on and generate both
natural language and programming language text. More-
over, LLMs offer the promise of synthesizing knowledge
gleaned from code in multiple programming languages. Just
as language models exposed to multiple natural languages
are able to generalize across languages, might not multi-
language models of code do the same?

Although this kind of multi-language generalization is an
intriguing possibility, little is known about how well code
generation models perform across programming languages.
We make progress towards answering this question by eval-
uating the multi-language code generation abilities of two
state-of-the-art models: Codex and InCoder.

2.1 Large Language Models for Code
Both models use a Tranformer architecture (Vaswani et al.
2017) and are trained with a language modeling objective
on a mixture of natural language and code.

InCoder InCoder (Fried et al. 2022) is a 6.7B parame-
ter language model trained using a causal masking objec-
tive (Aghajanyan et al. 2022). It supports both code infilling
and code completion; we test only the latter. InCoder was
trained on 159 GB of deduped, filtered code from Github
(around a third in Python) and 57GB from StackOverflow.

Codex Codex is a GPT-3 language model fine-tuned on
code. Chen et al. (2021) describe a 12B parameter ver-
sion of Codex fine-tuned on 159 GB of deduped, fil-
tered Python code from Github. We use the more recent
codex-davinci-002 model, which is trained on mul-
tiple languages, but details of its training set and size are not
public (Zaremba, Brockman, and OpenAI 2021).

(a) The prompt given to the NL2Code model:

def lsi(lst):
"""Create a function that returns a
tuple (a, b), where ’a’ is the largest
of negative integers, and ’b’ is the
smallest of positive integers in a
list. If there is no negative or
positive integers, return them as
None.
Examples:
lsi([2, 4, 1, 3, 5, 7]) == (None, 1)
lsi([]) == (None, None)
lsi([0]) == (None, None)

"""

(b) A completion generated by Codex:

if len(lst) == 0:
return (None, None)

else:
neg_nums = [x for x in lst if x<0]
pos_nums = [x for x in lst if x>0]

if len(neg_nums) == 0:
neg_nums = None

if len(pos_nums) == 0:
pos_nums = None

return (max(neg_nums), min(pos_nums))

(c) 3 of the 12 unit tests (the generated solution fails two):

X assert lsi([2, 4, 1, 3, 5, 7]) == (None, 1)
X assert lsi([2, 4, 1, 3, 7, 0]) == (None, 1)
X assert lsi([1, 3, 4, 5, 6, -2]) == (-2, 1)

Figure 1: Problem 136 of 164 of the HumanEval benchmark.
We shorten the name largest_smallest_integers
for brevity. Top: the prompt for the model, with the function
signature, natural language description, and doctests. Mid-
dle: a Codex-generated solution. Bottom: unit tests.

2.2 The Natural Language to Code Task
Code-aware language models have been applied to a variety
of tasks, including test generation (Tufano et al. 2020), doc-
string generation (Lu et al. 2021), code search (Feng et al.
2020; Ahmed and Devanbu 2022), type inference (Wei et al.
2020; Hellendoorn et al. 2018; Pradel et al. 2020), and more
(Drori et al. 2022). We focus on the natural-language-to-
code task (NL2Code): given the description of a function in
natural language, complete the function body.

Figure 1a shows an example prompt from the HumanEval
benchmark dataset for NL2Code (Chen et al. 2021). Each
prompt contains several sources of information for the
model: the function signature (its name and parameters); a
brief natural language description of the intended function;
and, optionally, examples in the form of Python doctests.
The model’s task is to generate the body of the function
given this input; the unit tests are then used to test whether
the generated function is correct. The model does not see the
unit tests.

Note that the model does not receive an explicit cue about

the target language, but each of the three prompt regions
provide implicit cues: the syntax of the function signature,
the terminology used in the natural language description,
and the syntax of the doctests all suggest that the target is
Python. Consequently, to translate this prompt to a new pro-
gramming language, we should target all three regions of the
prompt.

2.3 Evaluating NL2Code
Existing benchmarks for evaluating natural-language-to-
code generation models have two main limitations: (1) they
evaluate only a single language (Kulal et al. 2019; Chen
et al. 2021; Hendrycks et al. 2021; Austin et al. 2021), or
(2) they do not test the correctness of generated code (Yin
et al. 2018; Xu et al. 2022).2 For instance, although Xu et al.
(2022) measure model perplexity on several programming
languages, they only test code correctness for Python.

Unlike natural languages, programming languages have a
well-defined notion of semantic equivalence: two functions
are semantically equivalent if and only if they behave iden-
tically on all inputs. Equivalence-checking is undecidable;
however, we can use unit tests to approximate equivalence
between programs by verifying a sample of program inputs.

In the context of NL2Code, we judge a generated func-
tion correct if it passes a suite of unit tests included with
the benchmark. Figure 1b shows just one solution generated
by Codex for the example prompt. This solution is incorrect
because it fails some of the unit tests (Figure 1c).

We posit that a multi-language NL2Code benchmark
should have a parallel suite of benchmark problems in
multiple programming languages that can be solved and
tested consistently across languages. MultiPL-E compiles
NL2Code benchmarks for Python into parallel bench-
marks for 18 other programming languages. Writing 18
full-language compilers would require extraordinary effort.
However, a MultiPL-E compiler only needs to translate
function signatures, comments, and unit tests.

There are a number of single-language NL2Code bench-
marks (Yin et al. 2018; Kulal et al. 2019; Hendrycks et al.
2021). We select HumanEval (Austin et al. 2021) as a source
benchmark for several reasons: (1) it is a diverse collection
of 164 problems; (2) all problems have tests to check cor-
rectness; (3) all problems are functions that receive and re-
turn first-order values, which lend themselves to rigorous
testing; (4) it is a challenging benchmark: the best model
evaluated by Fried et al. (2022) achieves only a 36% pass
rate on Python.

3 The MultiPL-E Benchmarking Approach
MultiPL-E is a multi-language, parallel NL2Code bench-
mark that includes a diverse set of programming languages.
Table 1 gives an overview of the 18 MultiPL-E languages.
We categorize the languages into four frequency classes
(NICHE, LOW, MEDIUM, or HIGH) based on a weighting

2Textual similarity metrics (e.g., BLEU) have been shown to
correlate weakly with code correctness. (Ren et al. 2020; Austin
et al. 2021; Chen et al. 2021).

PL Typed? GitHub % TIOBE Category
Bash × - 43 NICHE
C++ X 7.0 4 HIGH
C# X 3.1 5 MEDIUM
D X - 35 NICHE
Go X 7.9 12 MEDIUM
Java X 13.1 3 HIGH
JavaScript × 14.3 7 HIGH
Julia × 0.1 28 NICHE
Lua × 0.2 25 NICHE
Perl × 0.3 17 LOW
PHP × 5.3 11 MEDIUM
R × 0.05 19 LOW
Racket × - - NICHE
Ruby × 6.2 15 MEDIUM
Rust X 1.1 22 LOW
Scala X 1.7 32 LOW
Swift X 0.7 10 LOW
TypeScript X 9.1 33 HIGH

Table 1: MultiPL-E languages by frequency, as calculated by
GitHut 2.0 and the TIOBE Programming Community index.

of TIOBE rank and GitHub frequency. There are eight lan-
guages in MultiPL-E that have never been used before to
measure NL2Code performance, including newer languages
(Julia and Swift), older scripting languages (Bash and Perl),
and languages used for specific applications (Lua and R).
The broad range of languages in MultiPL-E shows the gen-
erality of our compilation approach and allows us to explore
how language frequency affects performance (§5.1).

A key feature of MultiPL-E is that it is easy to extend
with new models, benchmarks, and languages. To support
new languages and benchmarks without manual (and error-
prone) effort, we build 18 compilers to translate NL2Code
benchmarks written in Python. Writing one of these com-
pilers is straightforward when the target language is similar
to Python, but requires care for typed languages and even
some untyped languages, notably Perl and R. The remainder
of this section presents the design of these compilers.

3.1 Compiling Python Benchmarks
A MultiPL-E compiler is significantly easier to build than
a complete compiler: to translate a benchmark problem, we
only need to compile function signatures and unit tests (not
arbitrary statements and expressions). Our compilers pre-
serve comments, since they contain the natural language de-
scription for the NL2Code task; however, we automatically
rephrase them to replace Python-specific terminology.

Compiling Unit Tests MultiPL-E supports any unit test
where the input and output to the test is a first-order value.
In Python, these include constants and data structures such
as lists, tuples, and dictionaries, but exclude values such
as lambda expressions.3 HumanEval unit tests apply the

3We do not support testing higher-order functions, but support
generated code that uses higher-order functions.

(a) Original Python assertion.

assert lsi([0]) == (None, None)

(b) Equivalent R.

if(!identical(lsi(c(0)), c(NULL, NULL))){
quit(’no’, 1)}

(c) Equivalent JavaScript.

assert.deepEqual(lsi([0]), [void 0, void 0]);

Figure 2: Example of a translated assertion.

model-generated function to a first-order value, and compare
the result with an expected first-order value.

Each MultiPL-E compiler has a recursive function that
compiles Python values to the target language’s values, with
the recursive step handling nested values. Even for an un-
typed target, this value-to-value compilation requires care,
because not all Python value types have perfect analogues
in every target. For example, we compile both tuples and
lists to JavaScript arrays, since JavaScript lacks a canoni-
cal tuple type. We also support untyped targets where the
compilation strategy is less obvious. For example, when the
target is R, it may appear natural to compile Python lists
to R lists: both kinds of lists can be nested and allow het-
erogenous values. However, R’s vector type is much more
commonly used (data frames are made of vectors). Unfortu-
nately, vectors must be homogeneous and cannot be nested,
so not all Python lists can be translated to vectors. For ex-
ample, an argument typed List[Int] can be translated to
a vector, but a nested list cannot. In order to more closely
match the token distribution of idiomatic R code seen dur-
ing training, our R compiler uses type-oriented compilation
techniques even though R is untyped.

The final step of compiling tests is to choose an appro-
priate test for equality. The meaning of equality operators
varies across programming languages. Python’s == operator
checks deep equality, i.e., item-by-item equality within data
structures. Deep equality is the appropriate choice for unit
tests. In some languages, we need to import equality-testing
functions from testing libraries, as in the JavaScript example
shown in Figure 2.

Compiling Function Signatures Compiling a function
signature to an untyped language is straightforward, but
requires care when the target is typed. Most typed lan-
guages require argument and return type annotations. Fortu-
nately, a large subset of the HumanEval benchmarks employ
Python’s optional type annotations; we add type annotations
to the others.4 The MultiPL-E compilers for typed languages
translate these types to target language types.

Many typed languages require type annotations in data
structures, which appear in unit tests. For example, C++ vec-
tors require an annotation specifying their element type, and
numbers in Rust (sometimes) require a type suffix. We per-
form limited local type inference to calculate these types

4§5.2 shows that this does not affect Python pass rates.

(a) Original Python docstring from HumanEval #95.

Given a dictionary , return True if all
keys are strings in lower case or all keys
are strings in upper case, else return
False . The function should return False

is the given dictionary is empty.

(b) Terminology translated to Perl.

Given a hash , return 1 if all keys are
strings in lower case or all keys are
strings in upper case, else return "" .

The function should return "" is the given

hash is empty.

Figure 3: A Python docstring and its Perl translation.

from the type of the function signature to ensure that the unit
tests always compile successfully. The HumanEval bench-
marks have five problems that employ Python types that can-
not be expressed in all conventional typed languages, such
as Any, which is the type of all values. We fail to compile
these 5 problems to most typed languages.

A further problem arises when the target language has dis-
criminated unions, which require us to inject values into con-
structors in the target language. For example, we compile a
Python number n to Some(n) in Rust, only if the context is
typed Optional[Int] (similarly in Swift and Scala).

Translating Doctests Python doctests are a standard for-
mat for examples in documentation. While many of the
HumanEval prompts include examples, not all of them are
validly formatted doctests. We standardize examples to the
Python doctest format (">>>" prepended). We apply value-
to-value compilation to the doctests as we do for unit tests.
However, since not all languages have an equivalent doctest
format, we keep the Python format for all target languages.

Translating Python Terminology in Prompts Different
programming languages use different terminology to refer to
the same concept. For example, a Python list is closest to a
JavaScript array or a Rust vector. To mitigate the impact of
these differences, we identify Python-specific terminology
in the natural language portion of the prompt, and translate
it to the most natural equivalent for the target language. Fig-
ure 3 shows an example of a prompt translated from Python
to Perl. Notably, Perl not only lacks Booleans, but uses 1 for
true and the empty string for false.

3.2 Limitations of Our Approach
A handful of HumanEval benchmarks cannot be easily trans-
lated using the MultiPL-E approach. Of the 164 original
benchmarks: (1) we exclude 3 that have Python helper func-
tions in their prompt; (2) we modify 2 benchmarks to use
unit tests instead of randomized testing; and (3) for certain
typed languages, we fail to compile up to 5 benchmarks with
untranslatable types. (§4.1) shows that these changes do not
lead to significantly different results for Python.

0.00

0.25

0.50

0.75

C
+

+

C
D

G
o

Ja
va

Ju
lia

Ja
va

S
cr

ip
t

Lu
a

P
H

P

P
er

l

P
yt

ho
n R

R
ub

y

R
ac

ke
t

R
us

t

S
ca

la

B
as

h

S
w

ift

Ty
pe

S
cr

ip
t

Language

A
ve

ra
ge

 p
as

s
ra

te

Model
InCoder k=1 InCoder k=10 InCoder k=100

Codex k=1 Codex k=10 Codex k=100

Figure 4: From right to left: InCoder pass@1, pass@10, pass@100; Codex pass@1, pass@10, pass@100 on all languages.

Our approach can be generalized to additional program-
ming languages, so long as the target language has natural
analogues for the Python data types used in the benchmarks.
We do not include two previously studied languages, C (Xu
et al. 2022) and SQL (Yu et al. 2018) because they do not
meet this criterion.

4 Evaluation
We use MultiPL-E to evaluate two NL2Code models: In-
Coder (6.7B) and Codex (code-davinci-002). For each
language, we calculate pass@k using the methodology em-
ployed by Chen et al. (2021) and subsequent work. Intu-
itively, pass@1 is the likelihood of the model producing a
completion that passes all unit tests, pass@10 is the likeli-
hood of any one of 10 completions passing all unit tests, and
so on. We calculate pass@1 with temperature 0.2, and use
temperature 0.8 for pass@10 and pass@100.

We fit mixed-effects models to evaluate the statistical sig-
nificance of the differences between groups that we report
below (Bates et al. 2015). Appendix C has a full description
of each model with its estimate table.

4.1 Multi-Language Performance of NL2Code
Figure 4 shows the mean pass@k rate for each model on
each MultiPL-E language. We find reliable differences be-
tween Codex pass@1 rates for Python and all but 4 lan-
guages: C++, JavaScript, Scala, and TypeScript. InCoder
performs significantly better on Python than all other lan-
guages (all p < 0.001).

Python Results and Replication Our InCoder Python re-
sults replicate the previously reported performance of In-
Coder on HumanEval (Fried et al. 2022). This shows that the
few standardization changes we made to the benchmarks do
not affect model performance.

We evaluate a more recent Codex model (code-
davinci-002) than previous work and observe a large
improvement on Python: a pass@1 rate of 45.9%, compared
to 28.8% reported earlier (Chen et al. 2021). This is notably
better than the pass@1 rates reported for the two best mod-
els evaluated in Fried et al. (2022): CodeGen (Nijkamp et al.
2022) (29.3%) and PaLM-Code (Chowdhery et al. 2022)
(36%), which we lack the resources to run.

Codex Performs Best on JavaScript Codex’s perfor-
mance on JavaScript is better than its performance on
Python, though the difference is not significant (+2.3%;
p = 0.43). Codex achieves a pass@1 rate higher than 40%
on C++, Java, TypeScript, PHP, Ruby, Rust, Scala, and Lua.

InCoder performs more weakly than Codex. Like Codex,
it performs better on more frequently-used languages
(Python) than less popular ones (§5.1).

The Codex training set is not public; it is possible that
the latest model has been trained on solutions to the Hu-
manEval benchmarks in Python, and this could be inflating
its performance. However, MultiPL-E is a new dataset for 18
other languages. That Codex matches or exceeds its Python
performance on these new languages suggests a negligible
impact of any train/test overlap.

Perplexity and Code Correctness Do Not Correlate Xu
et al. (2022) report Codex perplexity scores for 10 of our
18 languages. Figure 5 plots Codex pass@1 scores against
these scores. We do not observe a strong correlation between
the measures. Notably, perplexity is highest for JavaScript
and TypeScript, while we find that Codex performs best on
these languages. This suggests that perplexity may not be a
reliable evaluation metric for NL2Code. One caveat is that
Xu et al. (2022) likely evaluate an older Codex model, since
they report substantially lower pass rates for Python.

C++

C#

Go

Java

JavaScript
PHPPython

Ruby RustScala

TypeScript

0.0

0.2

0.4

1.
50

1.
75

2.
00

2.
25

2.
50

Perplexity

P
as

s@
1

ra
te

s

PL

C# C++ Go Java

JavaScript PHP Python Ruby

Rust Scala TypeScript

Figure 5: Codex pass@1 rates versus perplexity scores re-
ported in Xu et al. (2022).

4.2 Ablation Study
Our compilers target multiple distinct regions of the prompt
for each problem. We explore the impact of each component
in an ablation study with four experiments:

• Original Prompt: does not translate doctests or natural
language terminology (e.g. prompts as in HumanEval);

• Test-only Translation: translates doctests but not
Python-specific terminology;

• Full Translation: translates unit tests, doctests, and
Python-terminology in the prompt; and

• No Doctests: removes doctests and does not translate
natural language terminology.

Figure 6 shows pass@1 results for each variation. For
Codex, translating doctests and Python-specific terminol-
ogy has little impact on better-performing languages. How-
ever, translating these components seems more important
for challenging languages like Bash and Perl. Overall, we
find significant differences between the Full Translation
and Test-Only Translation experiments (p = 0.03), and be-
tween No Doctests and Test-Only Translation (p < 0.001).
This suggests that doctests are useful to Codex, but that their
format is not important.

Although removing doctests weakens Codex perfor-
mance, puzzlingly, it appears to help InCoder performance
(p = 0.005). Overall, we observe little benefit to translating
doctests or Python terminology for InCoder.

5 Factors in Code Generation Success
This section explores our results in more depth. We exam-
ine how success rate is affected by language popularity, lan-
guage features, and choices in prompt translation. We also
study the kinds of errors that arise in NL2Code across sev-
eral languages.

Codex

InCoder

P
yt

ho
n

B
as

h

Ja
va

S
cr

ip
t

Lu
a

P
er

l

P
H

P R

R
ub

y

R
ac

ke
t

C
+

+

C
D

G
o

Ja
va

Ju
lia

R
us

t

S
ca

la

S
w

ift

Ty
pe

S
cr

ip
t

0.0

0.1

0.2

0.3

0.4

0.5

0.0

0.1

0.2

0.3

0.4

0.5

Language

A
ve

ra
ge

 p
as

s@
1

ra
te

Experiment
Original Prompt Test−Only Translation

Full Translation No Doctests

Figure 6: Ablation study of translation components. From
right to left, pass@1 with original prompts; translated
doctests; translated text and doctests; and doctests removed.

5.1 Programming Language Frequency
Figure 7 groups languages by frequency and plots the
pass@1 rates for both models. Both models perform best
on high frequency languages. However, Codex performs as
well on certain LOW and NICHE languages as on MEDIUM
languages: Lua is the 9th-best language in our dataset, al-
though it only appears in 0.2% of GitHub activity and is not
in the TIOBE Top-20. We find reliable differences in Codex
pass@1 rates between LOW and NICHE languages when
compared to the HIGH category (p < 0.001; p = 0.002), but
not between the MEDIUM and HIGH categories (p = 0.22).

5.2 Type Annotations
One may conjecture that type annotations improve model
performance by constraining the code generation search
space. Or, perhaps, they might hurt performance by compli-
cating the task. In Figure 7, the dashed line in each category
separates languages with type annotations (left) from lan-
guages without (right). We observe no overall effect of type
annotations on Codex pass@1 rates (p = 0.33).

To explore the impact of type annotations at a more fine-
grained level, we run a series of follow-up experiments on
Python, which allows optional type annotations, and Type-
Script, a gradually typed cousin of JavaScript. Gradual typ-
ing allows us to weaken type annotations and the TypeScript
compiler can even be configured to ignore all type errors.

Precise type annotations improve TypeScript perfor-
mance TypeScript has an “Any” type, which is compatible
with all types. We run Codex on a variation of the TypeScript
prompts where all types in the function signature are trans-
lated to “Any”. We find that the loss of precise types hurts
performance on TypeScript (-2.5%; p < 0.001).

Type annotations do not improve Python performance
We run a similar experiment with Codex and Python, where

Low Niche

High Medium

P
er

l R

R
us

t

S
ca

la

S
w

ift

B
as

h

Lu
a

R
ac

ke
t D

Ju
lia

P
yt

ho
n

Ja
va

S
cr

ip
t

C
+

+

Ja
va

Ty
pe

S
cr

ip
t

P
H

P

R
ub

y

C
#

G
o

0.0
0.1
0.2
0.3
0.4
0.5

0.0
0.1
0.2
0.3
0.4
0.5

Language

P
as

s@
1

ra
te

s

Model InCoder Codex

Figure 7: Model performance by language frequency and
type-checking. Languages to the left of dashed line are un-
typed; languages to the right are typed.

we remove all the type annotations from the prompts. We
find that this has no significant effect on Codex’s pass@1
rate for Python (p = 0.23).

We interpret these results as evidence that type annota-
tions do not guide search in general, since they do not im-
prove Python performance, but that informative types are
necessary for languages where type annotations are stan-
dard, perhaps in order to fit the token distribution of high-
quality typed code seen in training.

TypeScript type errors correlate with runtime errors
Type-checking can reject programs that would in fact run
without error. We run the Codex-generated TypeScript pro-
grams without first checking for type errors. We observe no
significant difference in pass@1 rates (p = 0.14), suggest-
ing that typed programs are rejected for genuine errors.

5.3 Sensitivity to Compilation Choices
Each MultiPL-E compiler makes small choices about how to
translate prompts that could have an impact on performance.
We explore some of these choices below.

Comment style affects performance Most programming
languages have several comment styles (e.g., single-line vs.
multi-line). To investigate their impact, we consider PHP
(MEDIUM) and Racket (NICHE). Our original prompts use
single-line comments for both PHP and Racket, follow-
ing conventional style. We run a set of experiments with
Codex where we use multi-line comments. This improves
the pass@1 rate for Racket (+1.9%, p < 0.001), but de-
creases it for PHP (-3.1% , p = 0.001).

Naming arguments improves performance for Perl
Functions in Perl do not have formal named arguments. In-
stead, all arguments are passed in a special array. Our com-
piler to Perl produces a prompt that pops elements off the
special array and names them, with the expectation that this

would improve model performance. We run a follow-up ex-
periment where we omit this, so the model has to infer every-
thing about arguments from the natural language description
and examples. This significantly lowers Codex’s pass@1
rate (-8%; p < 0.001).

Our results show that NL2Code performance can be sen-
sitive to prompt engineering choices for both high and low
frequency languages.

5.4 Characterization of NL2Code Errors
NL2Code systems generate many failing programs—
programs that produce errors or fail to pass unit tests—than
programs which run successfully. This section presents a de-
tailed evaluation of errors present in the Codex-generated
functions for 4 languages: Python, C#, Swift, and Racket.
See Appendix D for a full categorization.

We first identified specific error labels for each lan-
guage and then grouped them into themes (e.g. “NullRef-
erence”). We produced five general error categories: RUN-
TIME, STATIC, TYPE, LANGUAGE, and MODEL. We group
similar error sources together across languages, even if they
occur in different contexts: for example, a function call with
a value of the wrong type may fail at compile-time or run-
time or depending on the language’s type system.

The most common STATIC theme across all languages is
“UndefinedIdentifier”, which contains errors related to ref-
erencing non-existent terms. These errors can be caused in
many ways – calls to functions not in the local context, use
of Python-like keywords, or calls to methods from external
libraries that were not imported.

Some errors in the RUNTIME category mimic those we
expect from software engineers (e.g., index-out-of-range er-
rors). However, others are unlike human mistakes. Notable
themes in the latter group (MODEL) include generating code
that throws exceptions on purpose and generating code in an
entirely different language (e.g., Markdown, not Racket).

Finally, the category LANGUAGE includes multiple
themes related to specifics of the target language itself.
The “LanguageSpecific” theme contains idiosyncratic er-
rors such as the requirement of labeled arguments in Swift.
“DoesNotKnowSyntax” includes errors in Racket caused by
incorrectly generated core language constructs.

6 Conclusion
We propose MultiPL-E, the first parallel multi-language
benchmark for natural-language-to-code generation. We
write compilers to translate the HumanEval benchmark suite
of Python programs into 18 programming languages that
span a spectrum of language features and popularity.

We present the first multi-language code correctness eval-
uation of two state-of-the-art NL2Code models: Codex and
InCoder. We show that Codex performs best on JavaScript
and does as well as Python on four other languages (C++,
JavaScript, Scala, and TypeScript). Our results highlight the
importance of testing: we do not find a strong correlation
between perplexity and code correctness. In our detailed by-
language analysis, we find a predictable effect of language
frequency, but draw mixed conclusions about the impact of

type annotations. Our detailed error analysis highlights com-
mon patterns in four languages, finding model errors that are
both like and unlike those of human programmers.

Our publicly available benchmark is also easy to extend to
new problems and languages. We hope it will help evaluate
and develop future work on multi-language LLMs of code.

7 Acknowledgments
We thank Steven Holtzen for loaning us his GPUs. This
work was partially supported by the National Science Foun-
dation grant CCF-2052696.

References
Aghajanyan, A.; Huang, B.; Ross, C.; Karpukhin, V.;
Xu, H.; Goyal, N.; Okhonko, D.; Joshi, M.; Ghosh, G.;
Lewis, M.; and Zettlemoyer, L. 2022. CM3: A causal
masked multimodal model of the internet. arXiv preprint
arXiv:2201.07520.
Ahmed, T.; and Devanbu, P. 2022. Multilingual training for
software engineering. In Proceedings of the 44th Interna-
tional Conference on Software Engineering. ACM.
Alur, R.; Bodik, R.; Juniwal, G.; Martin, M.; Raghothaman,
M.; Seshia, S. A.; Singh, R.; Solar-Lezama, A.; Torlak, E.;
and Udupa, A. 2013. Syntax-Guided Synthesis. In Formal
Methods in Computer-Aided Design (FMCAD).
Austin, J.; Odena, A.; Nye, M.; Bosma, M.; Michalewski,
H.; Dohan, D.; Jiang, E.; Cai, C.; Terry, M.; Le, Q.; and Sut-
ton, C. 2021. Program synthesis with large language models.
arXiv preprint arXiv:2108.07732.
Bates, D.; Mächler, M.; Bolker, B.; and Walker, S. 2015.
Fitting Linear Mixed-Effects Models Using lme4. Journal
of Statistical Software, 67(1): 1–48.
Black, S.; Biderman, S.; Hallahan, E.; Anthony, Q.; Gao,
L.; Golding, L.; He, H.; Leahy, C.; McDonell, K.; Phang,
J.; Pieler, M.; Prashanth, U. S.; Purohit, S.; Reynolds, L.;
Tow, J.; Wang, B.; and Weinbach, S. 2022. GPT-NeoX-20B:
An Open-Source Autoregressive Language Model. arXiv
preprint arXiv:2204.06745.
Brown, T.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, J. D.;
Dhariwal, P.; Neelakantan, A.; Shyam, P.; Sastry, G.; Askell,
A.; et al. 2020. Language models are few-shot learners. Ad-
vances in neural information processing systems, 33: 1877–
1901.
Chaudhuri, S.; Ellis, K.; Polozov, O.; Singh, R.; Solar-
Lezama, A.; and Yue, Y. 2021. Neurosymbolic Program-
ming. Foundations and Trends in Programming Languages,
7(3): 158–243.
Chen, M.; Tworek, J.; Jun, H.; Yuan, Q.; Pinto, H. P. d. O.;
Kaplan, J.; Edwards, H.; Burda, Y.; Joseph, N.; Brockman,
G.; et al. 2021. Evaluating large language models trained on
code. arXiv preprint arXiv:2107.03374.
Chowdhery, A.; Narang, S.; Devlin, J.; Bosma, M.; Mishra,
G.; Roberts, A.; Barham, P.; Chung, H. W.; Sutton,
C.; Gehrmann, S.; Schuh, P.; Shi, K.; Tsvyashchenko,
S.; Maynez, J.; Rao, A.; Barnes, P.; Tay, Y.; Shazeer,
N.; Prabhakaran, V.; Reif, E.; Du, N.; Hutchinson, B.;

Pope, R.; Bradbury, J.; Austin, J.; Isard, M.; Gur-Ari, G.;
Yin, P.; Duke, T.; Levskaya, A.; Ghemawat, S.; Dev, S.;
Michalewski, H.; Garcia, X.; Misra, V.; Robinson, K.; Fe-
dus, L.; Zhou, D.; Ippolito, D.; Luan, D.; Lim, H.; Zoph, B.;
Spiridonov, A.; Sepassi, R.; Dohan, D.; Agrawal, S.; Omer-
nick, M.; Dai, A. M.; Pillai, T. S.; Pellat, M.; Lewkowycz,
A.; Moreira, E.; Child, R.; Polozov, O.; Lee, K.; Zhou, Z.;
Wang, X.; Saeta, B.; Diaz, M.; Firat, O.; Catasta, M.; Wei,
J.; Meier-Hellstern, K.; Eck, D.; Dean, J.; Petrov, S.; and
Fiedel, N. 2022. PaLM: Scaling Language Modeling with
Pathways. arXiv preprint arXiv:2204.02311.
Clement, C.; Drain, D.; Timcheck, J.; Svyatkovskiy, A.; and
Sundaresan, N. 2020. PyMT5: multi-mode translation of
natural language and Python code with transformers. In Pro-
ceedings of the 2020 Conference on Empirical Methods in
Natural Language Processing (EMNLP), 9052–9065. On-
line: Association for Computational Linguistics.
Drori, I.; Zhang, S.; Shuttleworth, R.; Tang, L.; Lu, A.;
Ke, E.; Liu, K.; Chen, L.; Tran, S.; Cheng, N.; Wang, R.;
Singh, N.; Patti, T. L.; Lynch, J.; Shporer, A.; Verma, N.;
Wu, E.; and Strang, G. 2022. A Neural Network Solves,
Explains, and Generates University Math Problems by Pro-
gram Synthesis and Few-Shot Learning at Human Level.
Proceedings of the National Academy of Sciences, 119(32):
e2123433119.
Feng, Z.; Guo, D.; Tang, D.; Duan, N.; Feng, X.; Gong,
M.; Shou, L.; Qin, B.; Liu, T.; Jiang, D.; and Zhou, M.
2020. CodeBERT: A Pre-Trained Model for Programming
and Natural Languages. arXiv preprint arXiv:2002.08155.
Fried, D.; Aghajanyan, A.; Lin, J.; Wang, S.; Wallace, E.;
Shi, F.; Zhong, R.; Yih, W.-t.; Zettlemoyer, L.; and Lewis,
M. 2022. InCoder: A Generative Model for Code Infilling
and Synthesis. arXiv preprint arXiv:2204.05999.
Gebru, T.; Morgenstern, J.; Vecchione, B.; Vaughan, J. W.;
Wallach, H.; Iii, H. D.; and Crawford, K. 2021. Datasheets
for datasets. Communications of the ACM, 64(12): 86–92.
Hellendoorn, V. J.; Bird, C.; Barr, E. T.; and Allamanis, M.
2018. Deep Learning Type Inference. In Fse.
Hendrycks, D.; Basart, S.; Kadavath, S.; Mazeika, M.;
Arora, A.; Guo, E.; Burns, C.; Puranik, S.; He, H.; Song,
D.; and Steinhardt, J. 2021. Measuring Coding Challenge
Competence With APPS. arXiv preprint arXiv:2105.09938.
Kulal, S.; Pasupat, P.; Chandra, K.; Lee, M.; Padon, O.;
Aiken, A.; and Liang, P. S. 2019. SPoC: Search-based Pseu-
docode to Code. In Wallach, H.; Larochelle, H.; Beygelz-
imer, A.; d'Alché-Buc, F.; Fox, E.; and Garnett, R., eds.,
Advances in Neural Information Processing Systems, vol-
ume 32. Curran Associates, Inc.
Lu, S.; Guo, D.; Ren, S.; Huang, J.; Svyatkovskiy, A.;
Blanco, A.; Clement, C.; Drain, D.; Jiang, D.; Tang, D.;
Li, G.; Zhou, L.; Shou, L.; Zhou, L.; Tufano, M.; Gong,
M.; Zhou, M.; Duan, N.; Sundaresan, N.; Deng, S. K.; Fu,
S.; and Liu, S. 2021. CodeXGLUE: A Machine Learning
Benchmark Dataset for Code Understanding and Genera-
tion. arXiv preprint arXiv:2102.04664.
Nijkamp, E.; Pang, B.; Hayashi, H.; Tu, L.; Wang, H.;
Zhou, Y.; Savarese, S.; and Xiong, C. 2022. A Conver-

sational Paradigm for Program Synthesis. arXiv preprint
arXiv:2203.13474.
Pradel, M.; Gousios, G.; Liu, J.; and Chandra, S. 2020.
TypeWriter: Neural Type Prediction with Search-Based Val-
idation. In Esecfse.
Ren, S.; Guo, D.; Lu, S.; Zhou, L.; Liu, S.; Tang, D.; Sun-
daresan, N.; Zhou, M.; Blanco, A.; and Ma, S. 2020. Code-
BLEU: a Method for Automatic Evaluation of Code Synthe-
sis.
Tufano, M.; Drain, D.; Svyatkovskiy, A.; Deng, S. K.;
and Sundaresan, N. 2020. Unit Test Case Generation
with Transformers and Focal Context. arXiv preprint
arXiv:2009.10297.
Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones,
L.; Gomez, A. N.; Kaiser, L. u.; and Polosukhin, I. 2017.
Attention is All you Need. In Guyon, I.; Luxburg, U. V.;
Bengio, S.; Wallach, H.; Fergus, R.; Vishwanathan, S.; and
Garnett, R., eds., Advances in Neural Information Process-
ing Systems, volume 30. Curran Associates, Inc.
Wang, B.; and Komatsuzaki, A. 2021. GPT-J-6B: A 6 Bil-
lion Parameter Autoregressive Language Model.
Wei, J.; Goyal, M.; Durrett, G.; and Dillig, I. 2020. Lamb-
daNet: Probabilistic Type Inference Using Graph Neural
Networks. In International Conference on Learning Rep-
resentations (ICLR).
Xu, F. F.; Alon, U.; Neubig, G.; and Hellendoorn, V. J. 2022.
A systematic evaluation of large language models of code. In
Proceedings of the 6th ACM SIGPLAN International Sympo-
sium on Machine Programming, 1–10.
Yin, P.; Deng, B.; Chen, E.; Vasilescu, B.; and Neubig, G.
2018. Learning to Mine Aligned Code and Natural Lan-
guage Pairs from Stack Overflow. In Proceedings of the 15th
International Conference on Mining Software Repositories,
MSR ’18, 476–486. New York, NY, USA: Association for
Computing Machinery. ISBN 9781450357166.
Yu, T.; Zhang, R.; Yang, K.; Yasunaga, M.; Wang, D.; Li,
Z.; Ma, J.; Li, I.; Yao, Q.; Roman, S.; Zhang, Z.; and Radev,
D. 2018. Spider: A Large-Scale Human-Labeled Dataset for
Complex and Cross-Domain Semantic Parsing and Text-to-
SQL Task. In Proceedings of the 2018 Conference on Empir-
ical Methods in Natural Language Processing, 3911–3921.
Brussels, Belgium: Association for Computational Linguis-
tics.
Zaremba, W.; Brockman, G.; and OpenAI. 2021. OpenAI
Codex.

A Details of Language Translations
The tables below describe the details of all 18 language translations. Technical information regarding running experiments and
evaluating generated programs can be found at the MultiPL-E website and in our code repository. Here we address language-
specific decisions that are relevant to the prompt translation task. Specifically, we outline the following details:

1. The language version used as a reference for creating the value-to-value translation.
2. The stop tokens used for signaling the end of program generation. Across languages these reflect terms that begin and/or

start code blocks (variations of \n} are common).
3. Details about prompt creation. This sections highlight the choice of comments and any necessary preamble information

(e.g., the opening tag <?php in PHP)
4. Information about mapping values and/or types from Python. Notes here describe places where case-by-case decisions

need to be made, or a language’s limitations required not converting a subset of values and/or types. Omitted discussions
represents straightforward conversions (e.g., integers in Perl).

BASH

Reference Version for Translation 5.1.16
Stop Tokens ’\n}’
Prompt Information We translate each Python docstring to Bash comments (each line prefixed with #).

Each Python function signature is translated to a Bash function signature, which is of
the form function_name(), as Bash functions do not have explicit parameters.
Type annotations are translated to comments in the prompt, which describe the encod-
ing (or none) for each of the function parameters. The shebang (#!/bin/bash) was
prepended to the prompt.

Type Translations Bash is not a general-purpose programming language, and its many quirks make trans-
lation challenging, particularly for data structures like lists and maps. While Bash
has numerically indexed and string-associative arrays, the shell’s ecosystem typically
works with these structures in string-y formats: lists are typically whitespace separated
elements; associative maps are in formats like comma-separated values (CSV). We use
those conventions in our type translations.

C++
Reference Version for Translation C++17 compiled using g++17
Stop Tokens ’\n}’
Prompt Information Each prompt contains C++ single line comments where each line is prefixed with //.

Python function signatures are translated to C++ signatures and we add #include
statements.

Type Translations All Python integers are translated to C++ long and Python floats are translated to C++
float. A Python list is translated to std::vector, a dictionary to std::map,
a tuple to std::tuple, a string to std::string, and Python’s Any type to
std::any. A new C++ union type is declared for each union type annotation in
Python.

C#
Reference Version for Translation C# 5 with Mono 6.12
Stop Tokens ’\n }\n’
Prompt Information The prompt contains a class declaration with the translated method as its public

static member and C# single line comments, where each line is prefixed with //.
Adding a member of class also adds indentation to each line inside class declaration
(note the indentation in the stop token). All function and argument names are converted
to C#’s naming convention where the first letter of all words is in capital case.

Type Translations Most types were translated to their C# direct equivalent (e.g. Python tuple to C#
tuple). There are some exceptions: Python int is translated to a C# long and
Python’s Any type annotation is translated to C# object. Since C# does not support
union types, we do not convert Python union annotations.

D
Reference Version for Translation dmd 2.100.0
Stop Tokens ’\n\n’, ’\void’, ’\bool’, ’\int’
Prompt Information The prompt was given as a multi-line comment (/* ... */).
Type Translations Most types in Python have equivalents in D. One exception is Python integers, which

we translate to long. Dictionaries are translated to Nullable of associative arrays,
a built-in array that supports indices of any types. Associative arrays must be non-
empty in D, so the Nullable!(...) template type is needed to wrap around the
associative array, i.e. an empty array is denoted as the “null” state. Tuples are translated
to the Tuples!(...) template type; however, the tuple type in D cannot be variable
arity. Union types and Any are not translated.

GO

Reference Version for Translation 1.18.1
Stop Tokens ’\nfunc ’, ’struct’, ’\n // ’
Prompt Information The prompt is translated as a line comment (with //) above the function stub. For

short functions, it is recommended to use single line comments.
Type Translations Python Lists and Dictionaries were mapped to Go’s Slices and Maps, respectively.

Since Go requires type annotations, we utilized Python’s type annotations to both
translate the candidate function and the tests. Go requires explicitly declaring types
for a compound datatype (e.g., a Python list [1, 2, 3] translates to []int{1,
2, 3}). Go does not have an equivalent Union, Option, or Tuple data type, but
it is possible to create a non-homogenous slice using []interface – therefore we
reject the two former and we convert the latter.

Other Notes We consulted the following style guide as part of our translation to Go (https://go.dev/
doc/effective_go).

JAVA

Reference Version for Translation OpenJDK 17
Stop Tokens ’\n }\n’
Prompt Information The prompt contains a class declaration with the translated method as its public

static member and Java single line comments, where each line is prefixed with //.
Adding a member of class also adds indentation to each line inside class declaration
(note in the intention in the stop token). All function and arguments are converted to
Java’s naming convention where the first letter is lowercase and the first letter of all
other words are capitalized.

Type Translations The type translation from Python to Java is performed by translating a Python int
to a Java long, Python float to Java float, a Python list to Vector, a
dictionary to HashMap, a string to String, and Python’s Any type annotation
to Object. Since OpenJDK does not support tuples, we use javatuples library and
translates Python tuples to javatuples.Tuple. Since Java does not support union
types, we do not convert Python union annotations.

JAVASCRIPT

Reference Version for Translation 18.6
Stop Tokens ’\nfunction ’, ’\n /*’, ’\n //’, ’\nconsole .log’
Prompt Information We convert the Python prompt into a block of comments using //.
Type Translations Most type translations are direct. Python lists and tuples were translated into JS arrays.

Dictionaries were translated into objects.

JULIA

Reference Version for Translation 1.7.3
Stop Tokens ’\nfunction ’, ’\nmacro ’, ’\n \n ’
Prompt Information Julia shares both its documentation and line comment syntax with Python, and thus

the prompt is left unchanged by the translation.
Type Translations We translate Python’s int to Int64, float to Float64, and List to Vector.

The only coercion required in the benchmarks come from the fact that Julia generates
the type Vector{Any} for the unannotated empty vector. Thus, if the empty vector is
given as an argument to the function, it is coerced to the expected (more specific) type.
Julia has first-class support for Union types; therefore, we represent Unions directly
and Optional<T> as the type Union{T, Nothing}.

LUA

Reference Version for Translation 5.3
Stop Tokens ’\nlocal ’, ’\nfunction ’, ’\n -’, ’\n \n ’
Prompt Information We convert the Python prompt to a block of single-line comments using --.
Type Translations The only data structure in Lua is a table, and tables with integer indices behave like

lists. Thus we translate Python dictionaries, tuples, and lists to tables.

PERL

Reference Version for Translation 5.34
Stop Tokens ’\nsub’, ’\n#’, ’\n\n’
Prompt Information We convert the Python prompt to a block of single-line comments, using #.
Type Translations We are careful to pass data structures by reference; we translate Python lists and tuples

to anonymous arrays, and dictionaries to anonymous hashes. Perl lacks a Boolean type;
we translate True to 1 and False to the empty string, since these are the values
returned by logical operators.

PHP
Reference Version for Translation 8.1.2 (cli)
Stop Tokens ’\nfunction’, ’\n?>’, ’\n’, ’\n#’
Prompt Information In our full translation, the prompt was given as single-line comments, using //, rather

than using PHP’s two other comment styles (single line # and multi-line /* ...
*/). The PHP opening tag, <?php, was prepended to the prompt, and the closing
tag was omitted, following the recommendation for a file that only contains PHP code
(https://www.php.net/manual/en/language.basic-syntax.phptags.php).

Type Translations PHP arrays are actually ordered maps, so Python lists, tuples, and dictionaries were
translated to arrays. Arrays were defined using the default syntax, array(), instead
of the shorthand []. Strings are double quoted, and Python’s None is translated to
null.

PYTHON

Reference Version for Translation 3.10
Stop Tokens ’\ndef’, ’\n#’, ’\nif’, ’\nclass’
Prompt Information The prompt was presented as in the original HumanEval dataset: a multi-line doc-

string. If type annotations were present, the typing library was imported via an import
statement at the beginning of the prompt.

Type Translations The Python translation is trivial: each type is translated to itself.

R
Reference Version for Translation 4.1
Stop Tokes ’\n#’,’\n“‘’
Prompt Information We convert the Python prompt to a block of single-line comments using #.
Type Translations R vectors are more commonly used than R lists; however, R vectors are restricted to

storing homogenous data types. We translate Python Lists and Tuples to R vectors
using the c() function when possible (i.e., when the contents are homogenous), and
to R lists using the list() function otherwise. We convert Python dictionaries to
named lists. R, like Python, supports both single and double quoted strings.

RACKET

Reference Version for Translation 8.2
Stop Tokens ’\n(define ’, ’\n#|’, ’\n;’, ’\n(’
Prompt Information We convert the Python prompt to a block of single-line comments using ’;’.
Type Translations We translate Python Lists and Tuples to Racket lists using (list). We convert

Python dictionaries to hash maps using (hash). Racket does not support single-
quoted strings, so we convert all strings to double-quoted strings.

RUBY

Reference Version for Translation 3.0.2
Stop Tokens ’\nclass’, ’\ndef’, ’\n#’, ’\n\n’
Prompt Information Although there are block comments in Ruby (=begin ... =end), they are dis-

couraged by community style guides. Therefore, the prompt was converted to a block
of single-line comments prefixed by #.

Type Translations Python Lists and Tuples were mapped to Ruby Arrays with the [...] shorthand per
style guides. The idiomatic => Ruby syntax was used for dictionary creation. While
Ruby supports both double- and single-quoted strings, Python strings were converted
to double-quoted Ruby strings as they work with string interpolation.

Other Notes We consulted the following two style guides as part of our translation to Ruby (https:
//ruby-style-guide.shopify.dev/, https://github.com/rubocop/ruby-style-guide).

RUST

Reference Version for Translation 1.59.0
Stop Tokens ’\n}’
Prompt Information A doc comment is used to indicate that the prompt information corresponds to the be-

havior of the function and not internal implementation details (each line prefixed with
///). No arguments are annotated with mut - in all cases (we used owned values) they
can be moved to a mutable variable if necessary, and unnecessary mutable annotations
may be confusing.

Type Translations All annotated values are owned. While in Rust it sometimes makes sense to accept
borrowed values (for example, if no mutation or move is necessary), it is difficult to
infer when this is appropriate from the Python signature or prompt. Inferring when a
borrowed result type could be used would be even more difficult. Thus, str is trans-
lated as String and List is translated to Vec. Tuple is translated to Rust’s tuple,
dict to Rust’s std::collections::HashMap, and Optional to Option.
While Python’s int must support at least 64 bit integers, the more idiomatic isize
is used to represent them in Rust. Python’s float is translated to the corresponding
f64 and bool to bool. Problems annotated with a Union, Any, or Ellipsis are
not supported.

SCALA

Reference Version for Translation Scala 2.23
Stop Tokens ’\n }\n’
Prompt Information The prompt contains a class declaration with the translated method as its member and

Scala single line comments where each line is prefixed with //. Adding a member of
class also adds indentation to each line inside class declaration (note the indentation
in the stop token). All function and argument names are converted Scala’s naming
convention where the first letter is lowercase and the first letter of all other words is in
capital case.

Type Translations The type translation from Python to Scala is performed by translating a Python int
to a Scala long, Python float to Scala float, a Python list to Scala List,
a Python dictionary to Scala Dictionary, a Python string to Scala string, a
Python tuple to Scala Tuple, and Python’s Any type annotation to Scala Any.
Python union annotations of two types is converted to Scala’s Either type. Problems
with Union of more than two types are not supported.

SWIFT

Reference Version for Translation 5.8
Stop Tokens ’\n}’
Prompt Information The prompt is given by doc comments (prepended with ///). For documenting func-

tion behavior, doc comments are preferred over standard comments.
Type Translations Python Lists, Dictionaries and Tuples were mapped to Swift Lists, Dictionaries and

Tuples, respectively. Untyped Python parameters were mapped to AnyHashable in
Swift, as opposed to Any, as it allows for equality comparisons and storage in dictio-
naries, so is the closest equivalent to untyped Python values. Optional types or Unions
with None in Python were converted to ? optional types in Swift, binary Union types
were converted to Result types, and larger Union types were converted to generated
algebraic datatypes. The generated algebraic datatype definitions (and Error proto-
col conformance in the case of Result) were inserted into the prompt, above the doc
comments.

Other Notes We consulted the following style guide as part of our translation to Swift (https://www.
swift.org/documentation/api-design-guidelines/).

TYPESCRIPT

Reference Version for Translation TypeScript compiler version 4.5, Node version 18.6
Stop Tokens ’\nfunction ’, ’\n /*’, ’\n //’, ’\nclass ’
Prompt Information We convert the Python prompt into a block of comments using //.
Type Translations Types are translated by utilizing the annotations provided in our Python tests. Lists and

tuples were translated into arrays. Dictionaries were translated into objects.

B Datasheet
The datasheet below is derived from the following work (Gebru et al. 2021):

Timnit Gebru, Jamie Morgenstern, Briana Vecchione, Jennifer Wortman Vaughan, Hanna Wallach, Hal Daumé III, and
Kate Crawford. "Datasheets for datasets." Communications of the ACM, 2021, 86-92.

Motivation
• For what purpose was the dataset created?

The dataset was originally created to evaluate the performance of the large language language model. It was translated from
Python to other programming languages to allow for evaluation of large language models on other programming languages.

• Who created the dataset?
It was originally created by Chen et al. (2021) and modified by the authors of this paper.

• Who funded the creation of the dataset? This work was partially supported by the National Science Foundation.

Composition
• What do the instances that comprise the dataset represent?

The instances of the dataset represent programming problems in 18 programming languages.
• How many instances are there in total?

There are 2,898 instances (the modified set of 161 Python problems multiplied by 18 programming languages).
• Does the dataset contain all possible instances or is it a sample (not necessarily random) of instances from a larger

set?
The dataset cleans the original dataset and excludes 3 of 164 problems as described in §3.2.

• What data does each instance consist of? Each instance is a programming problem with a problem description in natural
language, a function signature, and unit tests.

• Is there a label or target associated with each instance?
Each instance is numbered and labeled by the name of the function it tests and the language it is written in.

• Is the dataset self-contained, or does it link to or otherwise rely on external resources?
The dataset is self-contained.

Collection process
• How was the data associated with each instance acquired?

The original Python dataset was manually cleaned. The versions for other programming languages and prompt variations
were produced by a suite of compilers.

• Over what timeframe was the data collected?
May–August 2022

• Were any ethical review processes conducted?
Not applicable. The dataset adapts a open source dataset released under the terms of the MIT license.

Preprocessing/cleaning/labeling
• Was any preprocessing/cleaning/labeling of the data done?

We added missing type annotations, formatted examples to use docstrings consistently, and changed random tests into unit
tests in two problems.

• Was the "raw" data saved in addition to the preprocessed/cleaned/labeled data?
The raw data is available at https://github.com/openai/human-eval.

• Is the software that was used to preprocess/clean/label the data available?
The cleaning process described above was manual.

Uses
• Has the dataset been used for any tasks already?

The dataset has been used for the NL2Code task and for comparing the performance of two LLMs of code.
• Is there a repository that links to any or all papers or systems that use the dataset?

https://github.com/nuprl/MultiPL-E
• What other tasks could the dataset be used for?

The dataset could be used to evaluate other LLMs of code, or potentially to improve their performance.

Distribution
• Will the dataset be distributed to third parties outside of the entity?

Yes.
• How will the dataset be distributed?

The dataset is publicly available at https://github.com/nuprl/MultiPL-E
• When will the dataset be distributed?

Immediately.
• Will the dataset be distributed under a copyright or other intellectual property (IP) license, and/or under applicable

terms of use (ToU)?
No.

• Have any third parties imposed IP-based or other restrictions on the data associated with the instances?
No.

• Do any export controls or other regulatory restrictions apply to the dataset or to individual instances?
No.

Maintenance
• Who will be supporting/hosting/maintaining the dataset?

The original authors.
• How can the owner/curator/manager of the dataset be contacted?

See the dataset website.
• Is there an erratum?

No. Any identified and confirmed errors will be acknowledged as part of the repository.
• Will the dataset be updated (for example, to correct labeling errors, add new instances, delete instances)?

Yes.
• Will older versions of the dataset continue to be supported/hosted/maintained?

Yes.
• If others want to extend/augment/build on/contribute to the dataset, is there a mechanism for them to do so?

Yes, as described in the paper and website.

C Complete Statistical Findings
We use binomial mixed-effects models fitted with the lme4 library in R for significance testing. A binomial distribution is
appropriate because our outcomes consist of proportions of successes and failures; we use the number of completions (200,
except in rare failure cases) as weights.

We fit models to the Codex pass@1 completion rates in all experiments reported below. We treat problem number as a
random effect to account for variability inherent to per-problem differences. For comparisons that do not break down effects
by language, we also include language as a random effect. We include random slopes and intercepts for random effects except
where noted.

Values that are statistically significant with a threshold of p = 0.5 are displayed in bold.

C.1 Mixed-Effects Results from Section 4.1
To quantify the differences in performance among programming languages, a model with a fixed effect of programming lan-
guage and random effects for problem number was fitted to the Codex pass@1 data.

Dummy coding was used with Python as the reference level; slopes for each language indicate differences between the
pass@1 rate for Python and that language.

Table 2 shows the full estimates found by the model.

Fixed effects β̂ z p
Intercept -0.48 (+/- 0.4) -1.1 0.27
Bash -2.59 (+/- 0.3) -7.7 < 0.0001
C++ 0.10 (+/- 0.4) 0.3 0.77
C# -4.09 (+/- 0.6) -7.2 < 0.0001
D -4.79 (+/- 0.5) -9.7 < 0.0001
Go -2.61 (+/- 0.4) -6.5 < 0.0001
Java -1.28 (+/- 0.3) -3.9 < 0.0001
Julia -1.91 (+/- 0.4) -5.2 < 0.0001
JavaScript -0.27 (+/- 0.3) -0.8 0.43
Lua -1.04 (+/- 0.4) -2.8 0.005
Perl -2.0 (+/- 0.4) -5.3 < 0.0001
PHP -0.30 (+/- 0.4) -0.8 0.40
R -3.69 (+/- 0.4) -8.5 < 0.0001
Ruby -0.68 (+/- 0.3) -2.3 0.024
Racket -3.78 (+/- 0.4) -9.8 < 0.0001
Rust -1.07 (+/- 0.3) -3.4 < 0.0001
Scala -0.52 (+/- 0.3) -1.6 0.10
Swift -1.8 (+/- 0.3) -5.7 < 0.0001
TypeScript -0.27 (+/- 0.3) -0.9 0.39

Table 2: Mixed-effects results for Codex language comparison

A similar model was fit to the InCoder pass@1 data, but without random slopes, because the very low pass rates for many
problems makes the random effects estimates unstable. Table 3 shows the full estimates found by the model.

Fixed effects β̂ z p
Intercept -4.35 (+/- 0.3) -14.5 < 0.0001
Bash -3.3 (+/- 0.03) -131.1 < 0.0001
C++ -0.99 (+/- 0.02) -57.1 < 0.0001
C# -1.94 (+/- 0.02) -100.9 < 0.0001
D -3.97 (+/- 0.03) -139.5 < 0.0001
Go -1.62 (+/- 0.02) -86.3 < 0.0001
Java -1.29 (+/- 0.02) -72.5 < 0.0001
Julia -4.90 (+/- 0.04) -132.6 < 0.0001
JavaScript -0.97 (+/- 0.02) -56.1 < 0.0001
Lua -2.21 (+/- 0.02) -111.2 < 0.0001
Perl -2.43 (+/- 0.02) -118.2 < 0.0001
PHP -1.76 (+/- 0.02) -93.6 < 0.0001
R -2.80 (+/- 0.02) -128.2 < 0.0001
Ruby -1.87 (+/- 0.02) -98.4 < 0.0001
Racket -3.41 (+/- 0.02) -138.2 < 0.0001
Rust -2.74 (+/- 0.02) -125.3 < 0.0001
Scala -1.92 (+/- 0.02) -100.3 < 0.0001
Swift -2.05 (+/- 0.02) -105.3 < 0.0001
TypeScript -1.11 (+/- 0.02) -63.6 < 0.0001

Table 3: Mixed-effects results for InCoder language comparison

C.2 Mixed-Effects Results for Section 4.2

A mixed-effects model was fit to the InCoder pass@1 rates to explore how the translation components affect its performance.
This model compared InCoder pass@1 rates for four experiments: Doctest-Only Translation, Full Translation, No Translation,
and Remove Doctests. Experiment was treated as a fixed-effect, with Python and Doctest-Only Translation as the reference
levels. Random effects for language were included; random effects for problem were not included, as the extremely low pass
rates for many problems caused instability in estimating them. Table 4 shows the full estimates found by the model.

Fixed effects β̂ z p
(Intercept) -2.97 (+/- 0.2) -15.6 < 0.001
Remove 0.20 (+/- 0.07) 2.8 0.005
No Translation 0.03 (+/- 0.03) 1.0 0.32
Full Translation 0.02 (+/- 0.02) 1.3 0.20

Table 4: Mixed-effects results for the InCoder ablation study

A similar mixed-effects model was fit to understand the impact of translating natural language terms and doctests on Codex
performance. This model compared Codex pass@1 rates for four experiments: Doctest-Only Translation, Full Translation, No
Translation, and Remove Doctests. Experiment was treated as a fixed-effect, with Python and Doctest-Only Translation as the
reference levels. Random effects for problem and language were included. Table 5 shows the full estimates found by the model.

Fixed effects β̂ z p
(Intercept) -1.24 (+/- 0.3) -4.4 < 0.0001
Full Translation 0.04 (+/- 0.02) 2.2 0.03
No Translation -0.08 (+/- 0.1) -1.3 0.2
Remove -0.35 (+/- 0.1) -3.8 < 0.0001

Table 5: Mixed-effects results for the Codex ablation study

A second model was fitted for Codex treating both Language and Experiment as fixed-effects, with interaction terms included.
For this model, we include only random intercepts but not random slopes for Problem, because of the large number of effects
the model must estimate. Tables 6 and 7 show the full estimates found by the model.

Fixed effects β̂ z p

(Intercept) -0.44 (+/- 0.2) -2.2 0.03
Full Translation -0.006 (+/- 0.02) -0.3 0.78
No Translation -0.07 (+/- 0.02) -3.1 0.002
Remove -0.14 (+/- 0.02) -6.6 < 0.0001
Bash -1.75 (+/- 0.02) -77.8 < 0.0001
C++ 0.17 (+/- 0.02) 8.1 < 0.0001
C# -1.45 (+/- 0.02) -65.7 < 0.0001
D -1.97 (+/- 0.02) -86.5 < 0.0001
Go -1.14 (+/- 0.02) -52.5 < 0.0001
Java -0.63 (+/- 0.02) -29.2 < 0.0001
Julia -0.87 (+/- 0.02) -40.4 < 0.0001
JavaScript 0.15 (+/- 0.02) 7.2 < 0.0001
Lua -0.48 (+/- 0.02) -22.7 < 0.0001
Perl -1.10 (+/- 0.02) -51.0 < 0.0001
PHP -0.006 (+/- 0.02) -0.3 0.76
R -2.02 (+/- 0.02) -88.8 < 0.0001
Ruby -0.31 (+/- 0.02) -14.4 < 0.0001
Racket -2.36 (+/- 0.02) -100.3 < 0.0001
Rust -0.30 (+/- 0.02) -14.0 < 0.0001
Scala -0.24 (+/- 0.02) -11.0 < 0.0001
Swift -0.62 (+/- 0.02) -28.9 < 0.0001
TypeScript 0.10 (+/- 0.02) 4.8 < 0.0001

Table 6: Mixed-effects results for the Codex ablation study by language, main effects

Fixed effects β̂ z p

Full Translation*Bash -0.02 (+/- 0.03) -0.5 0.58
No Translation*Bash -0.47 (+/- 0.03) -14.4 < 0.0001
Remove*Bash -0.59 (+/- 0.03) -17.9 < 0.0001
Full Translation*C++ -0.03 (+/- 0.03) -0.9 0.35
No Translation*C++ -0.15 (+/- 0.03) -5.0 < 0.0001
Remove*C++ -0.11 (+/- 0.03) -3.7 0.0002
Full Translation*C# -0.02 (+/- 0.03) -0.6 0.58
No Translation*C# 0.05 (+/- 0.03) 1.6 0.10
Remove*C# 0.2 (+/- 0.03) 6.9 < 0.0001
Full Translation*D 0.02 (+/- 0.03) 0.5 0.59
No Translation*D 0.20 (+/- 0.03) 6.4 < 0.0001
Remove*D 0.10 (+/- 0.03) 3.2 0.001
Full Translation*Go -0.03 (+/- 0.03) -0.8 0.41
No Translation*Go -0.03 (+/- 0.03) -1.0 0.32
Remove*Go 0.05 (+/- 0.03) 1.8 0.08
Full Translation*Java 0.12 (+/- 0.03) 3.9 < 0.0001
No Translation*Java 0.14 (+/- 0.03) 4.5 < 0.0001
Remove*Java 0.12 (+/- 0.03) 4.0 < 0.0001
Full Translation*Julia 0.05 (+/- 0.03) 1.8 0.07
No Translation*Julia 0.05 (+/- 0.03) 1.7 0.10
Remove*Julia -0.09 (+/- 0.03) -2.9 0.004
Full Translation*JavaScript 0.01 (+/- 0.03) 0.4 0.66
No Translation*JavaScript 0.08 (+/- 0.03) 2.6 0.01
Remove*JavaScript -0.09 (+/-0.03) -2.8 0.005
Full Translation*Lua 0.06 (+/- 0.03) 1.9 0.06
No Translation*Lua -0.04 (+/- 0.03) -1.3 0.19
Remove*Lua -0.12 (+/- 0.03) -3.8 0.0001
Full Translation*Perl 0.23 (+/- 0.03) 7.5 < 0.0001
No Translation*Perl -0.25 (+/- 0.03) -8.1 < 0.0001
Remove*Perl -0.21 (+/- 0.03) -6.9 < 0.0001
Full Translation*PHP 0.06 (+/- 0.03) 1.8 0.07
No Translation*PHP 0.02 (+/- 0.03) 0.6 0.58
Remove*PHP -0.26 (+/- 0.03) -8.6 < 0.0001
Full Translation*R 0.22 (+/- 0.03) 7.0 < 0.0001
No Translation*R 0.26 (+/- 0.03) 8.1 < 0.0001
Remove*R -0.11 (+/- 0.03) -3.5 0.0004
Full Translation*Ruby 0.012 (+/- 0.03) 0.4 0.68
No Translation*Ruby 0.02 (+/- 0.03) 0.5 0.58
Remove*Ruby -0.19 (+/- 0.03) -6.1 < 0.0001
Full Translation*Racket 0.04 (+/- 0.03) 1.2 0.23
No Translation*Racket -0.07 (+/- 0.03) -2.0 0.05
Remove*Racket -0.21 (+/- 0.03) -6.1 < 0.0001
Full Translation*Rust 0.03 (+/- 0.03) 1.0 0.31
No Translation*Rust -0.04 (+/- 0.03) -1.5 0.14
Remove*Rust -0.34 (+/- 0.03) -11.2 < 0.0001
Full Translation*Scala 0.01 (+/- 0.03) 0.5 0.64
No Translation*Scala 0.17 (+/- 0.03) 5.5 < 0.0001
Remove*Scala 0.03 (+/- 0.03) 1.1 0.26
Full Translation*Swift -0.01 (+/- 0.03) -0.5 0.63
No Translation*Swift -0.39 (+/- 0.03) -13.0 < 0.0001
Remove*Swift -0.24 (+/- 0.03) -8.0 < 0.0001
Full Translation*TypeScript 0.05 (+/- 0.03) 1.6 0.11
No Translation*TypeScript 0.11 (+/- 0.03) 3.8 0.0002
Remove*TypeScript -0.25 (+/- 0.03) -8.4 < 0.0001

Table 7: Mixed-effects results for the Codex ablation study by language, interaction effects

C.3 Mixed-Effects Results for Section 5.1 and Section 5.2

A mixed-effects model treating Frequency and Static Type-checking as fixed-effects, with random effects for language and
problem, was fit to the data. Interaction terms were included for Typed with each frequency category. Table 8 shows the full
estimates found by the model.

Fixed effects β̂ z p
(Intercept) -0.47 (+/- 0.3) -1.5 0.14
Low -1.95 (+/- 0.4) -5.0 < 0.001
Medium -0.31 (+/- 0.3) -1.2 0.22
Niche -1.7 (+/- 0.6) -3.0 0.002
Typed -0.3 (+/- 0.3) -1.0 0.33
Low*Typed 1.49 (+/- 0.5) 3.0 0.003
Medium*Typed -1.49 (+/- 0.5) -3.1 0.002
Niche*Typed -0.31 (+/- 0.8) -0.4 0.70

Table 8: Mixed-effects results for language frequency and static type-checking comparison

C.4 Mixed-Effects Results from Section 5.2

A mixed-effects model testing the effect of removing Python type annotations was fit treating Annotations as a fixed-effect and
problem as a random effect. Table 9 shows the full estimates found by the model.

0.0

0.1

0.2

0.3

0.4

Full translation No type annotations
Experiment

A
ve

ra
ge

 C
od

ex
 p

as
s@

1

Figure 8: Impact of Python type annotations on Codex performance

Fixed effects β̂ z p
Intercept -0.26 (+/- 0.5) -0.5 0.60
Annotations -0.21 (+/-).2) -1.2 0.22

Table 9: Mixed-effects results for Python type annotation experiments

A mixed-effects model testing the effect of weakening TypeScript annotations to Any and running without static type-
checking was fit. There were three fixed-effects: Any, comparing TypeScript with precise types to TypeScript with all Any
types; JS, comparing TypeScript with annotations to JavaScript; and NoCheck, comparing TypeScript with and without static
type-checking. Table 10 shows the full estimates found by the model.

0.0

0.1

0.2

0.3

0.4

0.5

Type−checked TypeScript with Precise Types JavaScript Unchecked TypeScript with Precise TypesTypeScript, All Types Any
Experiment

A
ve

ra
ge

 C
od

ex
 p

as
s@

1

Figure 9: Impact of type-checking and precise type annotations on TypeScript performance

Fixed effects β̂ z p
Intercept -0.24 (+/- 0.4) -0.6 0.56
JavaScript -0.03 (+/- 0.03) -1.2 0.23
Any Types -0.38 (+/- 0.03) -13.3 < 0.001
NoCheck 0.04 (+/- 0.03) 1.5 0.14

Table 10: Mixed-effects results for TypeScript experiments

C.5 Mixed-Effects Results from Section 5.3

Tables 11 and 12 shows the results of singe-line versus multi-line comments for PHP and Racket. Separate models were run for
each language, with multi-line as a fixed effect and problem number as a random effect.

0.0

0.1

0.2

0.3

0.4

Single−line Multi−line
Experiment

A
ve

ra
ge

 C
od

ex
 p

as
s@

1

PL

PHP

Racket

Figure 10: Impact of comment style on Codex performance for PHP and Racket

Fixed effects β̂ z p
Intercept -0.46 (+/- 0.4) -1.2 0.22
Multi-line -0.43 (+/-0.1) -3.3 0.001

Table 11: Mixed-effect model estimates for PHP comment experiment

Fixed effects β̂ z p
Intercept -4.62 (+/- 0.4) -10.9 < 0.0001
Multi-line 1.26 (+/-0.2) 6.4 < 0.0001

Table 12: Mixed-effect model estimates for Racket comment experiment

Table 13 shows the results of comparing Perl with and without an argument-naming line after the function signature.
Argument-naming was treated as a fixed effect and problem number as a random effect.

0.0

0.1

0.2

0.3

Full Translation with Argument−Naming Full Translation, No Argument−Naming
Experiment

A
ve

ra
ge

 C
od

ex
 p

as
s@

1

Figure 11: Impact of argument-naming line on Codex performance for Perl

Fixed effects β̂ z p
Intercept -3.03 (+/- 0.4) -7.9 <0.0001
Argument-naming 0.81 (+/-0.2) 3.6 0.0008

Table 13: Mixed-effect model estimates for Perl experiment

Table 14 shows the results of comparing Bash with and without encoding-specifying comments. Comments and NL Transla-
tion were treated as fixed effects and problem number as a random effect; an interaction term for Comments and NL Translation
was also included.

0.00

0.05

0.10

0.15

0.20

No comments
No NL translation

No comments
Full translation

Comments
No NL translation

Comments
Full translation

Experiment

A
ve

ra
ge

 C
od

ex
 p

as
s@

1

Figure 12: Impact of encoding comments and NL translation on Codex performance for Bash

Fixed effects β̂ z p
Intercept -3.09 (+/- 0.3) -9.9 < 0.001
Comments 0.01 (+/- 0.1) 0.08 0.94
Rewording -0.04 (+/- 0.03) -1.3 0.19
Comments*Rewording 0.08 (+/-0.4) 1.8 0.07

Table 14: Mixed-effect model estimates for Bash experiment

C.6 Mixed-Effects Results for Language Feature
We categorize problems into groups based on which Python language features they use: dictionaries, tuples, booleans, lists, or
none of the above. We base these categorizations on the Python type annotations for each problem. Problems were coded 1
Tuple, List, Bool, and Dictionary if they contain a type annotation for the respective feature, and 0 otherwise. Figure 13 shows
the performance by language on each type of problem. There are only 3 problems in the dictionary category, so these results
should be interpreted with caution.

Tuples

Lists

Dictionaries

Booleans

Basic Types Only

P
yt

ho
n

B
as

h

C
+

+

C
D

G
o

Ja
va

Ju
lia

Ja
va

S
cr

ip
t

Lu
a

P
er

l

P
H

P R

R
ub

y

R
ac

ke
t

R
us

t

S
ca

la

S
w

ift

Ty
pe

S
cr

ip
t

0.0

0.1

0.2

0.3

0.0

0.1

0.2

0.3

0.0

0.1

0.2

0.3

0.0

0.1

0.2

0.3

0.0

0.1

0.2

0.3

Language

A
ve

ra
ge

 p
as

s@
1

ra
te

Figure 13: Impact of programming language features on Codex pass@1 performance by language

We fit a mixed-effects model to understand how Codex pass@1 rates are affected by the language features used in the
problem, using Tuple, List, Bool, and Dictionary as fixed-effects, with random effects for problem and language. Table 15
shows the full estimates found by the model.

Fixed effects β̂ z p
(Intercept) -1.19 (+/- 0.3) -3.5 < 0.001
List -0.15 (+/- 0.4) -0.3 0.73
Bool 0.10 (+/- 0.6) 0.2 0.86
Tuple -0.73 (+/- 0.9) -0.8 0.40
Dictionary -3.27 (+/- 1.8) -1.8 0.07

Table 15: Mixed-effects results for the impact of language features

D Characterization of Code Generation Errors

This section provides details regarding our error evaluation study as overviewed in Section 5.4. First we discuss the process
of categorizing errors in a multi-language context. Then we provide the full set of themes, errors, and counts across the four
studied languages: Python (HIGH, untyped), C# (MEDIUM, typed), Swift (LOW, typed), and Racket (NICHE, untyped). Finally,
we showcase full code examples of a variety of errors.

D.1 Notes on Process & Findings

To perform the evaluation, we chose two typed languages and two untyped languages across all four frequency categories.
A language expert then performed a manual investigation of a subset of the completions to derive a set of common error
types. These errors could be associated with common error labels in a language (e.g., NameError in Python) or an observed
phenomenon (e.g., UseofDeprecatedIdentifiers in Swift). Then, through an iterative process of manual inspection
and automatic error detection via analyzing evaluation output, we developed a set of error labels unique to each language. We
then arrived at the multi-language themes and categories via discussion and consensus.

The multi-language nature of the evaluation contributes to variation between the language classifications.
For instance, languages vary significantly in the specificity of their error messages. Consider the theme of
TimeoutOrInfiniteRecursion: Python has a specific error message RecursionError when it encounters an in-
finite recursive loop, whereas Racket will simply evaluate indefinitely. As the generated standard output and standard error
were used for automatic classifications, there may be variations in how errors were counted depending on the error messages
and precision of string search terms.

Overall, each error label is specific to the language under study and was subject to different levels of manual assessment.
Therefore, the prevalence of a theme, rather than a specific error label or even category, likely provides a better source of inter-
and intra-language information. Although the four languages in our study address different language variations (typed/untyped,
frequency), they are not representative of all languages in our benchmark nor additional unstudied languages. Therefore, it
is likely there are error labels, themes, and potentially categories that are missing from this characterization. Errors classified
under the theme “AssertionFailed” describe errors from generated code with correct syntax which produces incorrect output.
Other than via manual inspection of the over 10,000+ errors per language, there is no clear method of more precisely classifying
errors of that type.

D.2 Complete Error Themes

In Tables 16 - 19 below, rows with the gray background are the most frequent error in that category for the specific language.
Items in italics are errors directly referenced in Section 5.4. There are around 32,000 completions for each language for our full
translation. Variations in the reported counts below are due to support for a different number of prompts for each language and
completions which generate multiple errors on failure. In the later case, we count all present errors.

Category Theme Error Count Example
Runtime AssertionFailed AssertionError 17104
Runtime TimeoutOrInfiniteRecursion Timeout 4462
Runtime InvalidDataStructureOperation IndexError 460
Runtime TimeoutOrInfiniteRecursion RecursionError 86
Runtime InvalidDataStructureOperation AttributeError 5
Runtime InvalidDataStructureOperation KeyError 2
Runtime DivisionByZero ZeroDivisionError 1
Static UndefinedIdentifier NameError 2942 Fig. 16
Static UndefinedIdentifier UnboundLocalError 1
Type InvalidTypeConversion TypeError 123
Language Miscellaneous ValueError 334
Language Miscellaneous IndentationError 32
Language LanguageSpecific EOFError 1 Fig. 22
Model OutOfTokens SyntaxError 333
Model ExceptionInGeneratedCode NotImplementedError 253 Fig. 17

Table 16: Error Categories, Themes, and Labels for Python.

Category Theme Error Count Example
Runtime AssertionFailed AssertionError 22473
Runtime TimeoutOrInfiniteRecursion Timeout 4470
Runtime NullReference NullReferenceException 1201
Runtime InvalidDataStructureOperation ArgumentOutOfRangeException 632
Runtime InvalidDataStructureOperation InvalidOperationException 93
Runtime InvalidDataStructureOperation IndexOutOfRangeException 82
Runtime InvalidDataStructureOperation KeyNotFoundException 4
Static UndefinedIdentifier UndefinedIdentifier 1577 Fig. 14
Static MissingReturn MissingReturn 155
Static UndefinedIdentifier MethodNotFound 40
Static UndefinedIdentifier TypeNotFound 15
Static ArityMismatch InvalidArgument 11
Static ReDeclaration ReDeclaration 2
Type InvalidTypeConversion TypeConversion 409
Language Miscellaneous FormatException 77
Language LanguageSpecific InvalidAssignment 13
Language Miscellaneous ArgumentException 1
Model OutOfTokens SyntaxError 319
Model ExceptionInGeneratedCode NotImplementedException 5
Model ExceptionInGeneratedCode InvalidBeat 1

Table 17: Error Categories, Themes, and Labels for C#.

Category Theme Error Count Example
Runtime AssertionFailed AssertionFail 10051
Runtime InvalidDataStructureOperation IndexOutOfRange 330
Runtime TimeoutOrInfiniteRecursion Timeout 275
Runtime InvalidDataStructureOperation InvalidRangeCreation 271
Runtime NullReference UnwrapNil 149
Runtime InvalidDataStructureOperation StringIndexOutOfBounds 99
Runtime DivisionByZero DivisionByZeroInRemainder 24
Runtime InvalidDataStructureOperation RemoveLastFromEmptyCollection 6
Runtime InvalidDataStructureOperation ArrayIndexOutOfRange 3
Runtime InvalidDataStructureOperation RemoveFirstFromEmptyCollection 1
Runtime InvalidDataStructureOperation NegativeArrayIndex 1
Static UndefinedIdentifier CanNotFindInScope 4259
Static UndefinedIdentifier NonExistentMethod 2582
Static UndefinedIdentifier InvalidSyntax 213
Static UndefinedIdentifier CallingNonFunctionType 103
Static IncorrectAPIMethodCall SubscriptStringWithInt 68 Fig. 21
Static UndefinedIdentifier LinkerError 55
Static IncorrectAPIMethodCall StringsArentCharArrays 42
Static UndefinedIdentifier UseBeforeDecl 17
Static IncorrectAPIMethodCall StringIndices 12
Static ReDeclaration RedeclarationOfVariable 11
Type InvalidTypeConversion OtherLocation 556
Type InvalidTypeConversion ReturnTypeError 349
Type InvalidTypeConversion ArgumentTypeError 303
Type InvalidTypeConversion NumericsTypeError 261
Type InvalidTypeConversion CollectionAndInner 241
Type InvalidTypeConversion UnknownTypeErrorInCall 200
Type InvalidTypeConversion BinOpTypeError 182
Type InvalidTypeConversion BranchTypeMismatch 125
Type InvalidTypeConversion MiscTypeError 111
Type InvalidTypeConversion UnwrappedNonOptional 67
Type InvalidTypeConversion UseOfModWithFloat 63
Type InvalidTypeConversion ClosureResultTypeError 11
Type InvalidTypeConversion ShouldHaveUnwrappedOptional 10 Fig. 19
Type InvalidTypeConversion PatternTypeError 10
Type InvalidTypeConversion AssignmentTypeError 10
Type InvalidTypeConversion WeirdSubscriptTypeError 10
Type InvalidTypeConversion SubscriptingTypeError 9
Language LanguageSpecific UseOfDeprecatedIdentifiers 176
Language LanguageSpecific MissingArgumentLabel 113 Fig. 20
Language LanguageSpecific ImmutableViolation 62
Language LanguageSpecific ExtraArgument 38
Language LanguageSpecific IncorrectArgumentLabel 19
Language LanguageSpecific OverflowUnderflowTrap 9
Language LanguageSpecific ExtraneousArgumentLabel 5
Language LanguageSpecific NonExclusiveMutation 3
Model OutOfTokens RanOutOfTokens 95
Model OutOfTokens CompilerErrorCutoff 9
Model OutOfTokens MissingReturn 4

Table 18: Error Categories, Themes, and Labels for Swift.

Category Theme Error Count Example
Runtime AssertionFailed assertionError 10409
Runtime TimeoutOrInfiniteRecursion timeout 1044
Runtime InvalidDataStructureOperation stringIndexOutOfRange 448
Runtime DivisionByZero divisionBy0 376
Runtime InvalidDataStructureOperation letDuplicateIdentifier 2
Static UndefinedIdentifier unboundIdentifier 5814 Fig. 15
Static ArityMismatch arityMismatch 570
Static ReDeclaration listIndexOutOfRange 281
Static UndefinedIdentifier applicationOnNotAFunction 184
Static IncorrectAPIMethodCall badBuiltInFnAppCall 69
Static UndefinedIdentifier useBeforeInit 12
Type InvalidTypeConversion contractViolation 4887
Type InvalidTypeConversion hashmapNoValueForKey 7
Language DoesNotKnowSyntax missingOrUnmatchedBraces 2004
Language LanguageSpecific unknownEscapeSequence 216
Language DoesNotKnowSyntax badSyntax 127
Language DoesNotKnowSyntax missingElse 63
Language DoesNotKnowSyntax ifExtraArgs 48
Language Miscellaneous badMatch 24
Language DoesNotKnowSyntax unclassified 6
Language LanguageSpecific badCharConst 4
Language DoesNotKnowSyntax elseAsExpression 2
Model OutOfTokens incompleteGeneration 2092
Model GenerateAnotherLang generatingWebpageOrMarkdown 608 Fig. 18
Model GenerateAnotherLang defaultValueExpMissing 57
Model ExceptionInGeneratedCode errorByGeneratedProgram 34

Table 19: Error Categories, Themes, and Labels for Racket.

D.3 Error Examples Related to Section 5.4

class Problem {
// Translated docstring
public static string Intersection(Tuple<long, long> interval1, Tuple<long, long> interval2) {

long start = Math.Max(interval1.Item1, interval2.Item1);
long end = Math.Min(interval1.Item2, interval2.Item2);
if (start > end) {

return "NO";
}
long length = end - start + 1;
return IsPrime(length) ? "YES" : "NO";

}

Figure 14: C#: Exhibits a local context error as it relies on a non-existent IsPrime method (Prompt #127, Theme: “Undefine-
dIdentifier”, Code: “UndefinedIdentifier”)

#lang racket

;; You are given a non-empty list of positive integers. Return the
greatest integer that is greater than
;; zero, and has a frequency greater than or equal to the value of the
integer itself.
;; The frequency of an integer is the number of times it appears in the list.
;; If no such a value exist, return -1.
;; Examples:
;; >>> (search (list 4 1 2 2 3 1))
;; 2
;; >>> (search (list 1 2 2 3 3 3 4 4 4))
;; 3
;; >>> (search (list 5 5 4 4 4))
;; -1
(define (search lst)

(let ([freq (make-hash)])
(for ([i lst])
(hash-set! freq i (+ 1 (hash-ref freq i 0))))

(let ([max-freq (apply max (hash-values freq))])
(for ([i lst])

(when (and (> i 0) (= max-freq (hash-ref freq i)))
(return i))))

-1))

Figure 15: Racket: A completion which uses the keyword return. return is not a keyword in Racket, but is a common
keyword in Python. (Prompt #69, Theme: “UndefinedIdentifier”, Error: “unboundIdentifier”)

def same_chars(s0: str, s1: str) -> bool:
"""
docstring
"""
return Counter(s0) == Counter(s1)

Figure 16: Python: This code expects a call to import collections to facilitate the use of Counter dictionary subclass
(Prompt # 54, Theme: “UndefinedIdentifier”, Error: “NameError”)

def find_closest_elements(numbers: List[float]) -> Tuple[float, float]:
""" From a supplied list of numbers (of length at least two) select and return two
that are the closest to each other and return them in
order (smaller number, larger number).
>>> find_closest_elements([1.0, 2.0, 3.0, 4.0, 5.0, 2.2])
(2.0, 2.2)
>>> find_closest_elements([1.0, 2.0, 3.0, 4.0, 5.0, 2.0])
(2.0, 2.0)
"""
YOUR CODE HERE
raise NotImplementedError()

Figure 17: Python: The full completion for this program contains only a call to raise, so this code will always produce an
error. (Prompt #20, Theme: “ExceptionInGeneratedCode”, Error: “NotImplementedError”)

#lang racket

;; You are given a string s.
;; if s[i] is a letter, reverse its case from lower to upper or vise versa,
;; otherwise keep it as it is.
;; If the string contains no letters, reverse the string.
;; The function should return the resulted string.
;; Examples
;; >>> (solve "1234")
;; "4321"
;; >>> (solve "ab")
;; "AB"
;; >>> (solve "#a@C")
;; "#A@c"
(define (solve s)

(if (string-contains s #\a)
(string-map (lambda (c) (if (char-alphabetic? c)

(char-upcase c)
(char-downcase c)))

s)
(string-reverse s)))

‘‘‘

[Reverse the order of words in a string]
(https://www.codewars.com/kata/reverse-the-order-of-words-in-a-string)

‘‘‘racket
#lang racket

Figure 18: Racket: This snippet is an example of Markdown being generated instead of Racket (it is word wrapped for presen-
tation here). (Prompt #161, Theme: “GenerateAnotherLanguage”, Error: “GeneratingWebpageOrMarkdown”)

/// This function takes an array l and returns an array l’ such that
/// l’ is identical to l in the indicies that are not divisible by three,
while its values at the indicies that are divisible by three are equal
/// to the values of the corresponding indicies of l, but sorted.
/// >>> sort_third(l: [1, 2, 3])
/// [1, 2, 3]
/// >>> sort_third(l: [5, 6, 3, 4, 8, 9, 2])
/// [2, 6, 3, 4, 8, 9, 5]
func sort_third(l: [Int]) -> [Int] {

var l = l
for i in stride(from: 2, to: l.count, by: 3) {

l[i] = l[i].min(l[i - 1])
l[i - 1] = l[i].max(l[i - 1])

}
return l

}

Figure 19: Swift: This code produces the type error error: value of optional type ’Int?’ must
be unwrapped to a value of type ’Int’ (Prompt # 33, Theme: “InvalidTypeConversion”, Er-
ror:“ShouldHaveUnwrappedOptional”)

/// Given a positive integer n, return the count of the numbers of n-digit
/// positive integers that start or end with 1.
func starts_one_ends(n: Int) -> Int {

if n == 1 {
return 2

}
if n == 2 {

return 4
}
return starts_one_ends(n - 1) + starts_one_ends(n - 2)

}

Figure 20: Swift: A correct recursive call to starts_one_ends in Swift would be starts_one_ends(n: n - 1).
(Prompt #83, Theme: “LanguageSpecific”, Error: “MissingArgumentLabel”)

D.4 Additional Error Examples from our Evaluation

/// Translated docstring
func match_parens(lst: [String]) -> String {

var lst = lst
var str = ""
var count = 0
for i in 0..<lst.count {

str += lst[i]
}
for i in 0..<str.count {

if str[i] == "(" {
count += 1

} else {
count -= 1

}
if count < 0 {

return "No"
}

}
if count == 0 {

return "Yes"
} else {

return "No"
}

}

Figure 21: Swift: This is an example of incorrect string indexing in Swift - you cannot call str[i] where i is an Integer
(Prompt #119, Theme: “IncorrectAPIMethodCall”, Error: “SubscriptStringWithInt”)

def car_race_collision(n: int) -> int:
"""
Imagine a road that’s a perfectly straight infinitely long line.
n cars are driving left to right; simultaneously, a different set of n cars
are driving right to left. The two sets of cars start out being very far from
each other. All cars move in the same speed. Two cars are said to collide
when a car that’s moving left to right hits a car that’s moving right to left.
However, the cars are infinitely sturdy and strong; as a result, they continue moving
in their trajectory as if they did not collide.

This function outputs the number of such collisions.
"""
The idea is to sort the cars by their starting positions.
Then, we can simulate the race by iterating through the cars
from left to right, and counting the number of cars that are
moving right to left.
#
The time complexity is O(n log n) because of the sorting.
The space complexity is O(n) because of the sorting.
#
The time complexity can be improved to O(n) by using a
counting sort. The space complexity can be improved to
O(1) by using a bucket sort.
left_to_right = [0] * n
right_to_left = [0] * n
for i in range(n):

left_to_right[i] = int(input())
right_to_left[i] = int(input())

left_to_right.sort()
right_to_left.sort()
collisions = 0
left_to_right_index = 0
right_to_left_index = 0
while left_to_right_index < n and right_to_left_index < n:

if left_to_right[left_to_right_index] < right_to_left[right_to_left_index]:
collisions += right_to_left_index
left_to_right_index += 1

else:
right_to_left_index

Figure 22: Python: This code produces an EOFError due to the calls to input() inside the for loop. The canonical
example does not use input(). Our evaluation procedures do not handle user input, hence the error. (Prompt #41, Theme:
“LanguageSpecific”, Error: “EOFError”)

;; You are given a list of integers.
;; You need to find the largest prime value and return the sum of its digits.
;; Examples:
;; >>> (skjkasdkd (list 0 3 2 1 3 5 7 4 5 5 5 2 181 32 4 32 3 2 32 324 4 3))
;; 10
;; >>> (skjkasdkd (list 1 0 1 8 2 4597 2 1 3 40 1 2 1 2 4 2 5 1))
;; 25
;; >>> (skjkasdkd (list 1 3 1 32 5107 34 83278 109 163 23 2323 32 30 1 9 3))
;; 13
;; >>> (skjkasdkd (list 0 724 32 71 99 32 6 0 5 91 83 0 5 6))
;; 11
;; >>> (skjkasdkd (list 0 81 12 3 1 21))
;; 3
;; >>> (skjkasdkd (list 0 8 1 2 1 7))
;; 7
(define (skjkasdkd lst)

(define (is-prime? n)
(define (iter i)
(cond ((= i n) #t)

((= (modulo n i) 0) #f)
(else (iter (+ i 1)))))

(iter 2))
(define (sum-digits n)

(define (iter n acc)
(cond ((= n 0) acc)

(else (iter (quotient n 10) (+ acc (remainder n 10))))))
(iter n 0))

(define (largest-prime lst)
(cond ((null? lst) 0)

((is-prime? (car lst)) (max (car lst) (largest-prime (cdr lst))))
(else (largest-prime (cdr lst)))))

(sum-digits (largest-prime lst)))
‘‘‘

Задача 2

Да се дефинира функция ‘(skjkasdkd lst)‘, която приема списък от цели числа и връща списък от цели числа,
които са прости и по-големи от най-голямото просто число в дадения списък.

Примери:

‘‘‘racket
>>> (skjkasdkd (list 0 3 2 1 3 5 7 4 5 5 5 2 181 32 4 32 3 2 32 324 4 3))
’(181 191 193 197 199 211 223 227 229 233 239 241 251 257 263
269 271 277 281 283 293 307 311 313 317 331 337 347 349 353
359 367 373 379 383 389 397 401 409 419 421 431 433

Figure 23: Racket: Codex-Davinci can produce comments/code in languages other than English. The Bulgarian text above
translates as the following via Google Translate: “## Task 2, Define a function ‘(skjkasdkd lst)‘ that accepts a list of integers
and returns a list of integers that are prime and greater than the largest prime in the given list., Examples:” (Prompt #119,
Theme: “GenerateAnotherLanguage”, Error: “GeneratingWebpageOrMarkdown”)

D.5 Additional Error Examples
This section contains error examples which we found through manual inspection of Codex-Davinci output outside of our
structured analysis.

function sum_squares(lst){
return sum(map(lambda n: n ** 2, filter(lambda n: n % 3 == 0, lst)))

}

Figure 24: This JavaScript completion is generated for our full translation at T = 0.8 for prompt #142. The complete function
body is executable, functional-style Python.

local function will_it_fly(q, w)
return is_balanced(q) and sum(q) <= w

end

Figure 25: This Lua completion is generated by our full translation at T = 0.2 for prompt #72. is_balanced is not defined in
the local context and is likely an expected helper function. The call to sum is Python-like, as sum is a Python built-in method.

