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Dynamically-typed languages offer easy interaction with ad hoc data such as JSON and S-expressions; statically-

typed languages offer powerful tools for working with structured data, notably algebraic datatypes, which are

a core feature of typed languages both functional and otherwise. Gradual typing aims to reconcile dynamic

and static typing smoothly. The gradual typing literature has extensively focused on the computational aspect

of types, such as type safety, effects, noninterference, or parametricity, but the application of graduality

to data structuring mechanisms has been much less explored. While row polymorphism and set-theoretic

types have been studied in the context of gradual typing, algebraic datatypes in particular have not, which

is surprising considering their wide use in practice. We develop, formalize, and prototype a novel approach

to gradually structured data with algebraic datatypes. Gradually structured data bridges the gap between

traditional algebraic datatypes and flexible data management mechanisms such as tagged data in dynamic

languages, or polymorphic variants in OCaml. We illustrate the key ideas of gradual algebraic datatypes

through the evolution of a small server application from dynamic to progressively more static checking,

formalize a core functional language with gradually structured data, and establish its metatheory, including

the gradual guarantees.
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1 INTRODUCTION
Most matters in programming can either be entirely resolved at runtime, or count on the help of

static type checking to enforce basic guarantees. Data structuring mechanisms are no exception.

Dynamically-typed programming languages like JavaScript, Scheme, and Python use ad-hoc, semi-

structured datatypes to support a prototype-based approach to development. The archetypal

example is S-expressions, thanks to which one can simply represent data as a list with a ‘tag’

symbol at its head indicating the kind of data, followed by arbitrary elements. As prototypes grow,

though, it can be challenging to safely evolve semi-structured datatypes. It is very easy to miss

an uncommon path and forget to add support for new parts of the datatype or update support for

changed ones. Statically-typed languages excel at this kind of maintenance, pointing programmers

directly to the changed cases. Indeed, static datatype definitions are more rigid but bring stronger

guarantees, such as ensuring that all possible alternatives of a given datatype have been considered.
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In any case, statically-typed languages must also deal with semi-structured data, which can be found

all over the web [Buneman 1997], in formats such as JSON, S-XML, or indeed XML itself. Dealing

with semi-structured data then requires falling back on alternatives such as string manipulations

or generic structures with reflection or runtime type coercions in order to access specific attributes.

Notably, the OCaml programming language supports polymorphic variants [Garrigue 1998] as a
more expressive and statically safe mechanism. Polymorphic variants are however completely

detached syntactically from the standard way of structuring data, namely algebraic datatypes.
For instance, a case expression cannot mix both algebraic datatypes and polymorphic variants.

In addition, the type system machinery is also widely different. This strict separation of worlds

complicates evolving code from one mechanism to the other.

This tension in data structuring mechanisms is reminiscent of the general tension between static

and dynamic type checking, which has attracted a large body of work, in particular in gradual

typing [Siek and Taha 2006]. Gradual typing allows for the smooth integration of static and dynamic

typing, supporting both extremes as well as the continuum between them. Gradual typing has been

explored for a variety of language features, such as subtyping [Garcia et al. 2016; Siek and Taha

2007; Takikawa et al. 2012], references [Herman et al. 2010; Siek et al. 2015b; Toro and Tanter 2020],

effects [Bañados Schwerter et al. 2014, 2016], ownership [Sergey and Clarke 2012], typestate [Garcia
et al. 2014; Wolff et al. 2011], session types [Igarashi et al. 2017b], refinements [Lehmann and Tanter

2017], type inference [Garcia and Cimini 2015; Vazou et al. 2018] parametricity [Ahmed et al. 2011,

2017; Igarashi et al. 2017a; New et al. 2020; Toro et al. 2019], etc.

However, the interaction of gradual typing with data structuring mechanisms has been rather

scarce. Notable exceptions are row polymorphism [Garcia et al. 2016; Sekiyama and Igarashi 2020],

set-theoretic types [Castagna and Lanvin 2017; Castagna et al. 2019] and union types [Siek and

Tobin-Hochstadt 2016; Toro and Tanter 2017]. For instance, Sekiyama and Igarashi [2020] devise

a language with row polymorphism and gradual records. In row types, every variant is its own

type, similar to Typed Racket [Tobin-Hochstadt and Felleisen 2008]. Row types are very flexible,

allowing for unknown variants, but they do not directly support the more conventional definitions

of nominal datatypes with a static set of variants.

This work explores the application of gradual typing to nominal algebraic datatypes as found in

many popular languages such as OCaml, Haskell, Scala, Elm, Rust, etc. We consider both closed

and open datatypes as found in e.g. Scala. We show that gradualizing such a language yields a

novel, expressive approach to gradually structured data: a simple type system allows for imprecise

static information while keeping a single namespace for all constructors, whether or not they

are statically declared. Gradual languages trade off between checking invariants statically and at

runtime. When adding algebraic datatypes to a language, the guarantees we are after are that all

pattern matches are complete, all constructors are statically known, and every constructor belongs

to at most one datatype. As we “go gradual”, these properties are no longer statically guaranteed.

Care must be taken to ensure that runtime checks allow moving programs seamlessly across the

static/dynamic spectrum; that is, the resulting language must not only satisfy type soundness, but

the gradual guarantees [Siek et al. 2015a] as well.

Contributions. This article presents the following contributions:

• We illustrate the use of gradually structured data in a novel language, GSD (for Gradually

Structured Data), through the evolution of a web API of a simple arithmetic interpreter

(Section 2).

• In addition to the standard unknown type, we identify the need for two novel gradual types

related to datatypes: the unknown datatype and the unknown open datatype.
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• We present a core statically-typed language with extensible, nominal algebraic datatypes

called λD (Section 3) and develop its corresponding gradual language λD? (Section 4).

• We develop the runtime semantics of λD? using an evidence-based intermediate language,

following the simplified approach to AGT proposed by Toro et al. [2019].

• We prove that λD? satisfies the expected criteria of [Siek et al. 2015a] for gradually-typed

languages (Section 4.5).

• We derive λD? from λD following the Abstracting Gradual Typing (AGT) methodology [Garcia

et al. 2016], thereby providing another case in favor of this systematic approach to gradual

language design. Using AGT ensures that the semantics of λD? is obtained systematically

from that of λD, and that the gradual guarantees are easy to uphold.

• We provide an implementation of GSD, a practical language built on top of λD?, together
with a number of illustrative examples, available at https://pleiad.cl/gsd.

In addition to briefly describing the implementation, Section 5 compares GSD and related languages.

Section 6 discusses other related work, and Section 7 concludes.

2 GRADUALLY STRUCTURED DATA IN ACTION
We now illustrate the use of gradually structured data as supported in our prototype language GSD

(for Gradually Structured Data). We walk through a four-step development scenario for the web

API of an arithmetic interpreter in GSD. The first version is fully dynamic, the fourth is almost

completely statically typed. Along the way we highlight the most important features related to

gradually structured data and the GSD language.

The Basic Arithmetic Server (BAS) is a simple web API for doing arithmetic calculations. Like

most contemporary web APIs, it communicates by sending and receiving JSON messages. Also like

most contemporary web APIs, we implement it with a prototype-based approach: we build a core

of functionality in the server, but the server evolves as its clients do. There is no fixed “protocol” up

front, only conventions. As the API becomes stable, the protocol becomes more fixed. Practically

speaking, this means the development starts out mostly untyped, and that developers only add

static types as parts of the development stabilize.

Version 1. The first version of BAS written in GSD supports addition and subtraction (Figure 1).

The server itself is the serve function (line 1), which takes a JSON request and returns a result (or

error) as a JSON string, using handleRequest (line 2) to actually perform the request.

To handle a request (lines 3-5), first the API key is checked with withValidKey and then pattern

matching determines what the request actually is. In this first version, BAS only supports addition

(Plus) and subtraction (Minus). All other operations fail with a string error message (Fail). The
definition of withValidKey (line 6) conveniently uses a direct field access (instead of pattern

matching) to extract the key attribute of the given request; we omit the definition of isValidKey,
which could be as complicated as a database call or as simple as a checksum.

The fromJSON function parses the JSON input to constructed data. Constructed data is similar to

an S-expression: it consists of a constructor name as a tag, followed by zero or more arguments. In

GSD, fromJSON expects its input to be an object with just one field. The field’s name becomes the

constructor (i.e. tag) and the field’s value the constructor arguments. For example:

> fromJSON '{"Plus": {"key":10, "x":1, "y":2}}'

Plus { key = 10, x = 1, y = 2 }

> fromJSON '{"Sqrt":{"key":10, "x":{"Frac":{"numerator":11, "denominator":12}}}} '

Sqrt { key = 10, x = Frac { numerator = 11, denominator = 12 } }

To seamlessly support this, constructors have labeled parameters; arguments with non-primitive

types use the field name as the outermost tag (e.g., Frac). Keeping fields and tags ensures no
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1 serve jsonReq = toJSON (handleRequest (fromJSON jsonReq))

2 handleRequest request =

3 withValidKey request (\r ⇒ match r with

4 Plus key x y ⇒ Success {r = (x + y)}

5 Minus key x y ⇒ Success {r = (x - y)}

6 _ ⇒ Fail {r = "Error: unknown command"})

7 withValidKey r action = if isValidKey r.key -- key validation details omitted

8 then action r else Fail {r = "Error: invalid key"}

Fig. 1. BAS Version 1: dynamically-typed, supporting addition, subtraction, and API keys

information is lost parsing JSON strings into data. Dually, toJSON serializes a data value to a JSON

string. Both of these functions are built-ins of GSD, because constructor name generation is not

first class.

The dynamically-typed BAS Version 1 handles API requests appropriately (assuming 10 is a

valid key):

> serve '{"Plus": {"key":10, "x":1, "y":2}}'

'{"Success": 3}'

> serve '{"Times": {"key":10, "x":1, "y":2}}'

'{"Fail": "Error: unknown command"}'

BAS Version 1 uses unstructured data: there are no declared datatypes. If the programmer were to

type Foil instead of Fail in the error case, there would be no static error, and toJSON would send

a confusing message to a client.

Adding Types. GSD is gradually typed. Unannotated binders are considered to have the unknown

type ?. As usual, ? is the least precise type, and is consistent with any other type. Recall that in

gradual typing, type precision (⊑) characterizes the amount of static information conveyed by a

gradual type. For instance, Int → Int ⊑ Int → ? ⊑ ? → ? ⊑ ?. Two types are consistent with each

other there is a way to fill in their ? parts to reach an equal type, e.g. Int ∼ ? but Int / Int → ?.

Concretely, this means that a variable of type ? can be used in any position regardless of its expected

type, and any value can flow to such a variable as well.

But adding datatypes to a language that only supports ? would only allow for the definition of

constructors with unknown parameter types, it would not support unclassified data. Furthermore,

having only the unknown type at hand would make it hard to precisely characterize when pattern

matching can proceed: at runtime, the discriminee must be some constructed data, no matter from

which datatype. In fact, this data may be from a statically-defined algebraic datatype, or unclassified.

To precisely characterize the minimal shape of values that can be pattern-matched, GSD intro-

duces a new gradual type, the unknown datatype ? . This type can be understood as the “ground

type” of data values (which can be eliminated by pattern matching), just like ? → ? is the ground

type of functions (which can be eliminated by function application). Therefore, pattern matching is

only well-typed if the discriminee has a type consistent with ? : pattern matching on an expression

of type ? → ? or Int is a static type error. Likewise, it is a static type error to try to use a ? -typed

expression in another elimination form, such as a function application, or primitive operation like

addition.

Additionally, GSD must assign a type to unclassified data. Using ? would be too imprecise to

be satisfactory. Indeed, it would allow unclassified data to be optimistically considered as part of

closed datatypes, which one expects to remain closed. When statically-typed code matches on an

expression of a datatype with, say, two variants, the pattern match is expected to be exhaustive and
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data Response = Success {x : ?} | Fail {msg : String}

open data Error

open data Request

serve : String → String

serve jsonReq = toJSON (handleRequest (fromJSON jsonReq))

handleRequest : Request → Response

handleRequest request =

withValidKey request (\r : Request ⇒ match r with

Plus key x y ⇒ Success (x + y)

Minus key x y ⇒ Success (x - y)

_ ⇒ Fail (msg CommandError))

withValidKey : Request → (Request → Response) → Response

withValidKey r action = if isValidKey r.key

then action r else Fail (msg InvalidKeyError)

msg : Error → String

msg err = match err with CommandError ⇒ "unknown command"

InvalidKeyError ⇒ "invalid key"

_ ⇒ "unknown error"

Fig. 2. BAS Version 2: explicit response structure, but undetermined request and error structure

not let unclassified data through. Therefore, GSD introduces another gradual type, the unknown

open datatype ? , which is more precise than the unknown datatype ? , and is only consistent

with open datatypes. Unclassified data has type ? since it is considered as possibly inhabiting any

open datatype. In summary, in GSD we have ? ⊑ ? ⊑ ?. Also, datatypes are syntactically tagged

with their openness: D refers to an open datatype, while D refers to a closed one. Given a closed

datatype D , we have D ⊑ ? but D / ? .

In Figure 1, matching on the r variable on line 2 is well-typed: r has type ?, which is consistent with
? . At runtime, when unclassified data (of type ? ) flows into r, the matching reduces successfully

because ? is more precise than ? . Importantly, if fromJSON returned a number instead of a data

value, the match would fail at runtime. This is because pattern matches require the type of the

discriminee to be at least as precise as ? , and Int is not. The type of fromJSON, String → ?,
allows it to return both integers and data values.

Version 2. In BAS Version 2, the developers start to firm up some of their definitions as the

application evolves (Figure 2), using GSD’s support for datatypes. First, the Response datatype is
explicitly declared as a closed datatype with two alternatives, one for Success and one for Failure.
A closed datatype is like a standard OCaml or Haskell algebraic datatype, in that all constructors

are specified in place. Contrastingly, the developer remains uncertain of which requests and errors

might occur, so the Error and Request datatypes are declared open. An open datatype admits the

declaration of new variants after the datatype declaration.
1
With these datatype declarations in

hand, the programmer can now give explicit types to most functions, such as handleRequest, of
type Request → Response. BAS Version 2 has narrowed down many of its representations, even

as it leaves some open—like Error and Request. Errors are no longer mere strings, but structured

data—the new msg function pattern matches on them to produce string-based error messages. In

1
Object-oriented class extensibility typically defaults to open, with keywords like final indicating closed types. Scala

supports algebraic datatypes with case classes. They are open by default (i.e. new variants can be added in other files/modules),

and Scala provides the keyword sealed for closed case classes, requiring all variants to be locally defined, as in a typical

functional programming language like Haskell or OCaml.
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data Response = Success { x : ? } | Fail { msg : String }

open data Error = CommandError | InvalidKeyError -- Declaring possible

open data Request = Plus { key : Int , x : ?, y : ? } -- constructors

| Minus { key : Int , x : ?, y : ? } --

serve : String → String

serve jsonReq = toJSON (handleRequest (fromJSON jsonReq))

handleRequest : Request → Response

handleRequest request =

withValidKey request (\r : Request ⇒ match r with

Plus key x y ⇒ Success (x + y)

Minus key x y ⇒ Success (x - y)

Not key x ⇒ Success (not x)

_ ⇒ Fail (msg CommandError))

withValidKey : Request → (Request → Response) → Response

withValidKey r action = if isValidKey r.key

then action r else Fail (msg InvalidKeyError)

msg : Error → String

msg err = match err with CommandError ⇒ "unknown command"

InvalidKeyError ⇒ "invalid key"

_ ⇒ "unknown error"

Fig. 3. BAS Version 3: partially-specified datatypes

GSD, open datatypes can be optimistically inhabited by any constructed data, so it is valid to match

a value of type Error with patterns of some unanticipated constructor names. The programmer

accounts for this with a catch-all _ case. Programmers familiar with polymorphic variants in OCaml

will recognize this intermediate structuring of data. The difference at this point is that in GSD there

is no polymorphic structural type inference as in OCaml, just simple gradual types. Many errors can

still happen at runtime in GSD! For example, handleRequest (Plus {key=1, x=False, y=7})
fails at runtime when handleRequest tries to evaluate False + 7 and handleRequest (Plus
{key=1, x=False, y=7, z=0}) produces a CommandError, because there is no pattern matching

a Plus constructor with four arguments.

Version 3. BAS Version 3 makes the Error and Request datatypes more static (Figure 3). For

instance, Plus and Minus have been promoted to official constructors of the Request datatype.

These explicit declarations fix the internal structure of these declared constructors: now Plus
{key=1, x=False, y=7, z=0} is a static type error, because the constructor is used with the

wrong number of arguments. Also, because Plus is now a declared constructor of the Request
datatype, Plus is no longer a possible constructor of another open datatype: passing Plus k x y
to errorMsg would yield a static type error.
Note that the types of the x and y fields of both Plus and Minus have type ? at this stage. So

not every such error is static: handleRequest (Plus {key=1, x=False, y=7}) fails at runtime

when trying to add False and 7.
Observe that Request and Error are still declared open, so they can still be optimistically

inhabited with unclassified data, and pattern matches on values of these types can handle arbi-

trary constructors. Here, for instance, the programmer has added experimental support for a Not
operation.

Version 4. Finally, BAS Version 4 is almost fully statically typed (Figure 4). Every datatype is

closed, and all unknown types ? have been replaced with static types. For instance, because the
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data Response = Success {x : Data} | Fail {msg : String}

data Data = N {x : Int} | B {x : Bool}

data Error = InvalidKeyError -- | CommandError is no longer possible

data Request = Plus {key : Int , x : Int , y : Int}

| Minus {key : Int , x : Int , y : Int}

| Not {key : Int , x : Bool}

serve : String → String

serve jsonReq = toJSON (handleRequest (fromJSON jsonReq))

handleRequest : Request → Response

handleRequest request =

withValidKey request (\r : Request ⇒ match r with

Plus key x y ⇒ Success (N (x + y))

Minus key x y ⇒ Success (N (x - y))

Not key x ⇒ Success (B (not x)))

-- Fail case is ruled out

withValidKey : Request → (Request → Response) → Response

withValidKey r action = if isValidKey r.key

then action r else Fail (msg InvalidKeyError)

msg : Error → String

msg err = match err with InvalidKeyError ⇒ "invalid key"

Fig. 4. BAS Version 4: fully specified datatypes

type of x is statically declared to be Int, the expression Plus {key=1, x=False, y=7} is now

ill-typed. Similarly, handleRequest (Times {key=1, x=3, y=7}) now yields a static type error,

because Times is not a valid constructor of Request. By closing all the datatypes, no catch-all cases
are needed anymore, which eliminates some runtime errors in pattern matches: the Error datatype
shrinks accordingly.

But every statically-typed language must eventually confront the outside world: fromJSON still

introduces a term of type ?. The “parse, don’t validate” approach popular in the statically-typed

functional programming community suggests writing a wrapper around fromJSON to ensure that

we only process appropriate Requests; we omit that development here to not belabor the point.

Summary. The table below summarizes the possible errors in each stage of the evolution of the

BAS running example implemented in GSD:

Unknown Invalid Unknown Invalid Unknown Wrong Ill-formed

command key error JSON field argument Plus
Version 1 L L L L L L ✓
Version 2 L L L L L A ✓
Version 3 L L L L L A A

Version 4 A L A L A A A

The first three columns correspond to the errors defined in the datatype Error. The other are

errors thrown by the interpreter: Invalid JSON is thrown if fromJSON is called with an invalid string,

Unknown field when r in withValidKey does not have the field key,Wrong argument represents errors
caused by calling a function with arguments of the wrong type, and Ill-formed Plus refers to the

possibility of constructing Plus with multiple arities and labels. In the table, ✓ means “runs without

errors”, L means “fails with a runtime error”, and A means “fails with a static error”.

As illustrated here, GSD is a simple language design for gradually structured data, which combines

well-known open/closed datatype declarations with standard gradual types, further enriched with
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two new gradual types (? as the ground type of constructed data, and ? as the unknown open

datatype). As a result, GSD accommodates a wide range of evolution and type strengthening

scenarios, all within the same frame of reference, which seems appealing in practice.

The following two sections develop the theory underlying GSD: Section 3 presents the static

language we consider as a starting point, and Section 4 exposes the gradual language derived from

it using the Abstracting Gradual Typing methodology (AGT) [Garcia et al. 2016].

3 ALGEBRAIC DATATYPES, STATICALLY
We begin by describing a statically-typed language λD: a call-by-value simply-typed lambda calculus

with algebraic datatypes. In the literature, models of algebraic datatypes come primarily in two

flavors: a simplified algebraic model, with pairs ((e1, e2), fst, snd) and disjoint sums (inl, inr, match)

and unit (the 0-ary or nullary product, ()), and a general, flexibly structural model in terms of row

types [Wand 1987]. We do not adopt either of these common models, opting instead for an explicit

model of named datatypes with associated constructors and a general notion of pattern matching,

in the spirit of GHC’s core calculus [Sulzmann et al. 2007]. We are interested in building a model

that can simulate some of the dynamics and pragmatics of contemporary languages.

To this end, two key features of λD are worth highlighting upfront. First, λD supports open
datatypes, which can be extendedwith new constructors. Recall that some statically-typed languages

support similar features: Scala has both open and closed variants; OCaml has both extensible and

polymorphic variants, though polymorphic variants are syntactically separated from standard

closed datatypes. Second, λD’s static semantics is parameterized overmatching strategies, to account
for variation in real languages: Haskell does not even warn on incomplete matches by default;

OCaml lets incomplete matches off with a warning, likewise for Scala with sealed case classes; Elm
rejects incomplete matches.

3.1 Syntax
The syntax of λD extends the simply-typed lambda calculus with algebraic datatypes in the style of

statically-typed functional languages like Haskell and OCaml (Figure 5).
2
TypesT are conventional,

including base types B (such as Int or String), function types T1 → T2, and named algebraic

datatypes D . Recall that each datatype is tagged with its openness: D denotes an open datatype

D, while D denotes a closed one. Datatype contexts ∆ map datatype names to constructor sets C ,
which may be empty (e.g., the uninhabited “void” type). Recall that closed datatypes have a fixed

set of variants given at definition time, while open ones can be extended with additional variants.

Constructor contexts Ξ map constructor names c to ordered, labeled products of types, i.e., records.

Record labels l should be used at most once for each constructor, but can be reused across them.

The expressions of the language include the usual variables, constants k , lambda abstraction,

applications, and static type ascriptions (which play a key role in the gradualization with AGT).

We add three syntactic forms to support datatypes: constructor applications, field accesses, and

pattern matching.

The constructor application c
{
l1 = e1, . . . , ln = en

}
applies the constructor c with field li set to (the

value of) ei . The field access e .l extracts field l from the data value resulting from evaluating e . Finally,
a pattern match match e with

{
p1 7→ e1; . . . ;pn 7→ en

}
compares the value of the discriminee e

2
Some notational conventions are defined for conciseness. We write l = e to mean l1 = e1, . . . , ln = en and p 7→ e to

mean p1 7→ e1; . . . ;pn 7→ en . When necessary we add a superscript next to the overline to make explicit the number of

elements being repeated, eg. l
i
= e i means l1 = e1, . . . , li = ei . Likewise, we write (x : T ), or more explicitly (xn : T

n
),

to mean (x1 : T1) . . . (xn : Tn ). We write

{
p
}
, or

{
pn

}
, to mean the set {p1, . . . , pn }. In the typing judgments we also

differentiate between definitional (�) and propositional equality (=).
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Datatypes
Datatype names D ∈ DTName

Openess ::= |

Constructor names c ∈ CtorName

Constructor sets C ∈ Ctors ⊆ CtorName

Labels l ∈ Label

Contexts
Datatype ctxs ∆ ::= · | ∆,D : C

Constructor ctxs Ξ ::= · | Ξ, c : (l : T )
Type ctxs Γ ::= · | Γ,x : T

Programs
Declaration decl ::= data D with Ξ

| extend D with Ξ

Programs P ::= decl, e

Types
Base types B ::= Int | . . .

Types T ::= B | T → T | D

Terms
Expressions e ::= x | k | e e | λx :T . e

| e :: T | c
{
l = e

}
| e .l

| match e with
{
p 7→ e

}
Identifiers x ∈ Var

Constants k ::= 0 | 1 | . . . | + | . . .

Patterns p ::= c x

Values v ::= k | λx :T . e | c
{
l = v

}
Errors err ::= errorM | errorA

Fig. 5. λD syntax

against each pattern pi in turn; when a pattern matches, the parts of the discriminee are bound by pi ,
and ei is evaluated with these bindings. As a modeling compromise, we do not allow nested patterns

in the formalism. However, top-level patterns are sufficiently expressive to encode nested patterns.

Although having positional constructor arguments may be simpler, we adopt labeled arguments

because working with semi-structured data is a key potential application of GSD. Labeled arguments

support encoding JSON objects directly, without increasing the gap between GSD and the formal

calculi. We include field access explicitly because it is (a) a useful feature in real languages, but (b)

challenging to encode faithfully using only pattern matching in the presence of open datatypes.

Finally, the outermost syntactic structures are programs. A program P is a sequence of declarations

followed by an expression. There are two kinds of declarations decl: datatype declarations and
datatype extensions. A datatype declaration data D with c1 : (l1 : T1), . . . , cn : (ln : Tn) extends
the datatype context with the datatype D associated to the constructors c1, . . . , cn . It also extends

the constructor context with each constructor ci and its signature (li : Ti ). The datatype extension
extend D with c1 : (l1 : T1), . . . , cn : (ln : Tn) extends the set of constructors associated with the

open datatype D in the datatype context with the new constructors c1, . . . , cn . Like with datatype

declarations, the constructor context is extended with every constructor and the labeled product of

types associated with it.

3.2 Static Semantics
The static language λD enjoys a mostly conventional static semantics, with ordinary rules for

type well-formedness, type equality, and term typing (Figure 7). Anticipating the use of AGT to

derive the gradual language, we define the static semantics a little more abstractly than usual:

side conditions in rules are explicit predicates and partial functions (Figure 8), so that we can use

Galois connections to derive the gradual versions (Section 4.2). The judgments concerning types

themselves are conventional, requiring that datatypes be well formed in the datatype context ∆,
which in turn requires that ∆ be well formed. Context well-formedness is formally complicated—

we build up three contexts well-formedness judgments on top of each other. Despite the formal

complexity, the context rules are conceptually simple (Figure 6). First, the datatype context ∆ is
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Context well-formedness ⊢ ∆ ∆ ⊢ Ξ ∆;Ξ ⊢ Γ

⊢ ·
∆-Empty

⊢ ∆ {D ,D } ∩ dom(∆) = ∅ ctors(∆) ∩C = ∅

⊢ ∆,D : C
∆-Ext

⊢ ∆

∆ ⊢ ·
Ξ -Empty

∆ ⊢ Ξ ∀i, j .1 ≤ i, j ≤ n, i , j =⇒ li , lj
∆ ⊢ T T = fty∆,Ξ(l , cty∆(c))

∆ ⊢ Ξ, c : (l : T )
Ξ -Ext

∆ ⊢ Ξ

∆;Ξ ⊢ ·
Γ-Empty

∆;Ξ ⊢ Γ ∆ ⊢ T

∆;Ξ ⊢ Γ,x : T
Γ-Ext

Program well-formedness P ok

decl, e ok ⇔ ∆ ⊢ Ξ ∧ ∆;Ξ; · ⊢ e : T where ∆ � data−ctx(decl) and Ξ � ctor−ctx(decl)

Context construction

data−ctx(decl) = fold(data−add−decl, ·, decl)
ctor−ctx(decl) = fold((λ(d,Ξ). Ξ, decl−ctors(d)), ·, decl)

data−add−decl(data D with Ξ,∆) = ∆, D : dom(Ξ) if {D ,D } ∩ dom(∆) = ∅

data−add−decl(extend D with Ξ,∆) = ∆, D : dom(Ξ ∪ Ξ′) if ∆(D ) = Ξ and Ξ ∩ Ξ′ = ∅

data−add−decl(_, _) = ⊥

decl−ctors(data D with Ξ) = Ξ
decl−ctors(extend D with Ξ) = Ξ

Fig. 6. λD: well-formedness of programs and contexts, and context construction

well formed when each datatype is assigned a disjoint set of constructors (∆-Ext). Next, given a

datatype context ∆, the constructor context Ξ is well formed (Ξ-Ext) when each constructor (a)

belongs to some datatype D (cty∆), (b) has arguments with disjoint labels, (c) each label is mapped

to a well formed, closed type, and (d) every other constructor in the same datatype that uses the

same label uses the same type at that label. Given a datatype context ∆ and constructor context

Ξ, the type context Γ is well formed if the types inside of it are well formed (Γ-Ext). Finally, the
judgment P ok asserts the well-formedness of the program P (Figure 6). A program is well formed

when the contexts constructed from its declarations are well formed, and its top-level term is

well typed. Contexts are constructed from the sequence of declarations in a program (Figure 6). A

datatype context ∆ is constructed by the partial function data−ctx, which maps datatypes to the

constructors that appear in their datatype declarations and datatype extensions. Datatype context

construction fails if the resulting context is ill-formed: either there are multiple declarations for

the same datatype, or a datatype is extended before it is declared. Using the function ctor−ctx, a

constructor context Ξ is built by collecting every constructor signature in the declarations.

The term typing rules for λD are standard (Figure 7). The rules are written with explicit type

predicates and functions (see T-App for example) in order to ease gradualization, following the

recommendation of [Garcia et al. 2016]. In addition to the usual lambda calculus rules, there are

rules specific to datatypes—T-Ctor, T-Access and T-Match—as well as an ascription rule T-Ascribe.
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Typing rules ∆;Ξ; Γ ⊢ e : T

∆;Ξ ⊢ Γ T � Γ(x)

∆;Ξ; Γ ⊢ x : T
T-Var

∆;Ξ; Γ ⊢ k : ty(k)
T-Const

∆;Ξ; Γ,x : T ⊢ e : T ′

∆;Ξ; Γ ⊢ λx :T . e : T → T ′
T-Lam

∆;Ξ; Γ ⊢ e1 : T1 ∆;Ξ; Γ ⊢ e2 : T2 T2 = dom(T1)

∆;Ξ; Γ ⊢ e1 e2 : cod(T1)
T-App

∆;Ξ; Γ ⊢ e : T T = T ′

∆;Ξ; Γ ⊢ e :: T ′
: T ′

T-Ascribe

T � cty∆(c) isdata(T ) ∆;Ξ; Γ ⊢ e : T

T = ltyΞ(l , c) satisfylabelsnΞ(c, l1 × · · · × ln )

∆;Ξ; Γ ⊢ c
{
l
n
= en

}
: T

T-Ctor

∆;Ξ; Γ ⊢ e : T isdata(T )

∆;Ξ; Γ ⊢ e .l : fty∆,Ξ(l ,T )
T-Access

∆;Ξ; Γ ⊢ e : T isdata(T ) valid∆,Ξ(
{
p
}
,T )

∀i ∈ [1,n] (xi1 : Ti1) × · · · × (ximi : Timi ) � pargmiΞ(pi )

∆;Ξ; Γ,xi1 : Ti1, . . . , ximi : Timi ⊢ ei : Ti

∆;Ξ; Γ ⊢ match e with
{
pn 7→ en

}
: equaten (T1, . . . ,Tn )

T-Match

Reductions e → e or err

(R-Beta) (λx :T . e) v −→ e [v/x]
(R-Delta) k v −→ δ (k,v)

(R-AscErase) v :: T −→ v

(R-Match) match c
{
l = v

}
with

{
p 7→ e

}
−→

{
ek [v/xk ] k smallest N s.t. c = ck where ck xk � pk
errorM there is no k s.t. c = ck

(R-Access) (c
{
l = v

}
).l −→

{
vk lk = l
errorA otherwise

Frames e 7−→ e or err

E ::= □ :: T | □ e | v □ | □.l | c
{
l = v, l = □, l = e

}
| match □ with

{
p 7→ e

}
e −→ e ′

e 7−→ e ′
R −→

e 7−→ e ′

E[e] 7−→ E[e ′]
RE

e −→ err

e 7−→ err
Rerr

e 7−→ err

E[e] 7−→ err
RErr

Fig. 7. λD: typing and dynamic semantics

Constructor application is well typed (T-Ctor) when (a) its type is a datatype, (b) the labels li match

what we know about the constructor, and (c) the subterms at each label are of the correct type for

that label. A field access e .l is well typed (T-Access) when the type of e is a datatype with at least

one constructor for which l is valid. Pattern matches are well typed (T-Match) when (a) the type of

the term being matched is a datatype, (b) the branches have the same type in a context extended

with the type of the pattern bindings, and (c) the patterns are valid with respect to the type of the

term being matched. λD’s static semantics accommodates different interpretations of when pattern

matches are valid—that is, when a list of patterns is considered sufficiently exhaustive (see below).

The typing rules use a number of partial type functions (Figure 8): dom and cod compute the

domain and codomain, respectively, of a given type (used in T-App); equaten computes the meet of
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dom : Type⇀ Type

dom(T1 → T2) = T1
dom(_) = ⊥

cod : Type⇀ Type

cod(T1 → T2) = T2
cod(_) = ⊥

equaten : Type
n ⇀ Type

equaten (T , . . . ,T ) = T
equaten (_, . . . , _) = ⊥

⊓ : Type × Type⇀ Type

T ⊓T = T
_ ⊓ _ = ⊥

pctor : Pattern → Ctors

pctor(c x) = c

cty∆ : Ctors⇀ Type

cty∆(c) =
.

{D ∈ dom(∆) | c ∈ ∆(D )}

ltyΞ : Label × Ctors⇀ Type

ltyΞ(l , c) = Ti (l1 : T1) × · · · × (ln : Tn ) = Ξ(c) ∧ l = li
ltyΞ(l , c) = ⊥ otherwise

fty∆,Ξ : Label × Type⇀ Type

fty∆,Ξ(l,D ) =
. {

ltyΞ(l, c) | c ∈ ∆(D )
}

fty∆,Ξ(l,T ) = ⊥

ctors : ∆ → P(Ctors)

ctors(∆) =
⋃

{∆(D ) | D ∈ dom(∆)}

isdata(T ) ⇔ T ∈ {D | D ∈ DTName}

pargnΞ : Pattern⇀ (Var : Type)n

pargnΞ(c x
n ) =

{
(x1 : T1) × · · · × (xn : Tn ) (l1 : T1) × · · · × (lm : Tm ) � Ξ(c) ∧ n =m

⊥ c < dom(Ξ) ∨ n ,m

satisfylabelsnΞ(c, l1 × · · · × ln ) ⇔ permutation(l1 . . . ln , l
′
1
. . . l ′m ) (l ′

1
: T1) × · · · × (l ′m : Tm ) � Ξ(c)

valid∆,Ξ(P ,D ) ⇔
⋃
p∈P

pctor(p)⋆ ∆(D ) where ⋆ is: ⊆ if Sound, = if Exact, or ⊇ if Complete.

Fig. 8. λD: type functions and predicates for datatype-related rules

a collection of types (used in T-Match); cty∆ computes the type of a constructor (used in Ξ-Ext and
T-Ctor); pargnΞ computes the bindings, with their expected types, of a pattern (used in T-Match);

fty∆,Ξ computes the type a label has for a specific type (used in Ξ-Ext and T-Access); ltyΞ computes

the type of a label for a specific constructor (used in T-Ctor and fty∆,Ξ); We also use two total

functions: pctor computes the constructor name of a pattern (used in T-Match via valid∆,Ξ; see

below); ctors computes the constructor set of a datatype (used in ∆-Ext, fty∆,Ξ, cty∆ and valid∆,Ξ);

We use some type predicates beyond the type equality in T-Ascribe: satisfylabelsnΞ checks that

a constructor has a specific set of labels (used in T-Ctor); isdata checks if a type is a datatype

(used in T-Ctor, T-Access and T-Match); and, finally, valid∆,Ξ determines whether or not a set of

patterns is sufficient (used in T-Match).

Matching Strategies. The language λD is parametric with respect to the meaning of valid pattern

matches. We introduce three possible matching strategies that characterize valid matches (valid∆,Ξ,

Figure 8): sound, complete, and exact. Sound matching corresponds to Haskell’s policy: every

pattern in the match expression must correspond to at least one constructor in the datatype,

but partial matches are allowed. Complete matching does not allow for partial matches, but case

branches can have patterns that do not match any constructor in the type. We are not aware of any

statically-typed language that lets one write extra cases using impossible constructor names. Even

so, allowing dead branches is harmless in the static system, and as we will see, the choice proves
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advantageous as we gradualize the type system. Exact matching is the combination of sound and

complete matching: every single constructor is accounted for, with none missing and none extra.

The exact regime is used for instance in Coq and Elm.

For example, using the concrete syntax of our implementation, the pattern matches below are

sound exact and complete with respect to A respectively:

data A = Foo | Bar

data B = Baz

-- Sound

match x with

Foo ⇒ ...

-- Exact

match x with

Foo ⇒ ...

Bar ⇒ ...

-- Complete

match x with

Foo ⇒ ...

Bar ⇒ ...

Baz ⇒ ...

As we will see, AGT allows us to derive meaningful gradual variants of λD for each strategy.

3.3 Dynamic Semantics
The reduction rules of λD are mostly standard (Figure 7). We use evaluation frames with call-by-

value semantics with errors; subterms are reduced from left to right and evaluation may fail. Values

are the usual suspects: constants, functions, and constructors applied to values (Figure 5).

There are five reduction rules: R-Beta reduces a function application by substitution, R-Delta

reduces an operator application by means of the δ function (which we assume to be adequately

typed), R-AscErase drops ascriptions on values, R-Match performs pattern matching on datatype

values, and R-Access performs partial field access on a constructor.

Note that field access is partial—i.e., it can fail at runtime, producing errorA. Field access e .l
fails when e reduces to a constructor without l. To illustrate this, suppose we define a datatype of

integer lists (List : {Cons,Nil} ∈ ∆ and {Cons : (hd : Int) × (tl : List),Nil : ⟨⟩} ⊆ Ξ). Then Nil.hd
would be well typed but fail at runtime, because Nil does not have hd as a field.

Depending on which matching strategy is used to typecheck the program (valid∆,Ξ, Section 3.2),

pattern matching may fail at runtime. Specifically, complete and exact pattern matching are guar-

anteed not to fail at runtime, but sound pattern matching might, producing errorM.

3.4 Metatheory
The exact type safety property that λD enjoys depends on the choice of matching strategy. As we

have just seen, in the exact and complete interpretations of valid∆,Ξ, programs can only fail with

errors caused by a field access error (errorA). But, if valid∆,Ξ is only meant to be sound, programs

can also fail by a pattern match error (errorM). To encode this dependency, we define the function

errors, which maps a matching strategym ∈ {Sound, Exact, Complete} to the set of errors that

might be produced: errors(Sound) = {errorM, errorA} and errors(m) = {errorA} otherwise.

Theorem 3.1 (Type safety of λD). When using matching strategym, if ∆;Ξ; · ⊢ e : T then either
e ⇓ v with ∆;Ξ; · ⊢ v : T , or e ⇓ err where err ∈ errors(m).

4 GRADUALLY STRUCTURED DATA
We now gradualize λD following the Abstracting Gradual Typing methodology (AGT) [Garcia et al.

2016], yielding the gradual language λD?. This section focuses on the statics of λD?. After a brief
overview of AGT, we introduce gradual types and the induced notion of (im)precision, and then lift

the statics semantics of λD to account for imprecise types. We then develop the runtime semantics

of λD? via an intermediate language, and conclude with the metatheory of λD?.
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4.1 Overview of AGT
The first step of the Abstracting Gradual Typing methodology (AGT) [Garcia et al. 2016] is to define

the syntax of gradual types and give them meaning through a concretization function to the set of

static types they denote. For instance, the unknown type represents any type, and a precise type

(constructor) represents the equivalent static type (constructor). For example, Int → ? denotes the

set of all function types from Int to any static type.

The key point of AGT is that once the meaning of gradual types is agreed upon, there is no

space for ad hoc design in the static semantics of the language. First, the notion of precision

between gradual types coincides with set inclusion of the denoted static types. Then, the abstract

interpretation framework provides us with the definitions of type predicates and functions over

gradual types, for which we can then find equivalent inductive or algorithmic characterizations.
In particular, a predicate on static types induces a counterpart on gradual types through existential

lifting: two gradual types are related if there exist static types in their respective concretization

that are related. For instance, consistency is the existential lifting of type equality. Lifting type

functions requires an abstraction function, establishing a Galois connection: a lifted function is the

abstraction of the result of applying the static function to all the denoted static types.

For obtaining the dynamic semantics of a gradual language, AGT augments a consistent judgment

(such as consistency or consistent subtyping) with the evidence of why such a judgment holds.

Then, reduction mimics proof reduction of the type preservation argument of the static language,

combining evidences through steps of consistent transitivity, which either yield a more precise

evidence, or fail if the evidences to combine are incompatible.
3
A failure of consistent transitivity

corresponds to a cast error in a traditional cast calculus.

In the rest of this section, we apply this methodology to λD in order to systematically derive λD?,
providing more details about the AGT approach as we go along.

4.2 Semantics of Gradual Types
The first step in building λD? is to define a denotation of gradual types as static types; this denotation
is called a concretization. Equipped with concretization, one can then lift static type predicates (such

as equality) to operate on gradual types (yielding consistency). Then, using the dual operation

of abstraction, static type functions (like dom, equaten , and valid∆,Ξ) can be lifted, yielding the

gradual type system.

The concretization function γ gives meaning to a gradual type by producing the non-empty set

of static types that it denotes (Figure 9). Gradual types are noted by the metavariable G:

G ::= B | G → G | D | ? | ? | ?

As usual, the unknown type denotes any static type. We deal with gradually structured data, and

so new forms of gradual types are required. First, we introduce the unknown datatype ? , which

stands for any datatype D . Values of type ? can be eliminated through pattern matching and field

access. We say that ? is the ground type for datatypes, both open and closed, just like ? → ? is the

ground type of functions, which can be eliminated through application. Additionally, to support

gradually structured data, it is helpful to account for “free-floating” constructors, which do not

(yet) belong to any statically defined datatype: the unknown open datatype ? , represents any open
datatype.

3
We refer to the evidence of a consistent judgment as a countable entity. Therefore, we use the plural evidences, following
the accepted use in academic English [Oxford 2021], instead of writing pieces of evidence or evidence objects.
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Galois Connection for Gradual Types

γ : GType → P∗(Type)

γ (B) = {B}
γ (G1 → G2) = {T1 → T2 | T1 ∈ γ (G1),

T2 ∈ γ (G2)}

γ (D ) = {D }

γ (? ) = {D | D ∈ DTName}

γ (? ) = {D | D ∈ DTName}

γ (?) = Type

α : P∗(Type) → GType

α({B}) = B

α
({
Ti1 → Ti2

})
= α

({
Ti1

})
→ α

({
Ti2

})
α({D }) = D

α
({
D i

})
= ?

α
({
D i

})
= ?

α
({
Ti
})

= ?

Type Precision G ⊑ G

B ⊑ B
P-Base

G11 ⊑ G21 G21 ⊑ G22

G11 → G12 ⊑ G21 → G22

P-Arrow

1 = 2

D
1
⊑ D

2

P-Data

G ⊑ ?

P-?

? ⊑ ?

P-?

? ⊑ ?

P-?

D ⊑ ?

P-? R

? ⊑ ?

P-? L

D ⊑ ?

P-? R

Type Consistency G ∼ G

B ∼ B
C-Base

G1 ∼ G ′
1

G2 ∼ G ′
2

G1 → G2 ∼ G ′
1
→ G ′

2

C-Arrow

D
1
= D

2

D
1
∼ D

2

C-Data

? ∼ ?

C-?

? ∼ D
C-? L

D ∼ ?

C-? R

? ∼ ?

C-?

? ∼ ?

C-? L

? ∼ ?

C-? R

D ∼ ?

C-DataL

? ∼ D
C-DataR

Fig. 9. Concretization and abstraction functions, type precision and type consistency

Gradual types are drawn from static types and type constructors together with the three unknown

types. As expected, a static type like Int or Int → Bool is a fully precise gradual type, which only

denotes itself.

Because several type-level functions and predicates are indexed by contexts, we need to define

concretization for both datatype and constructor contexts. The concretization functions (in supple-

mentary material) take some context with gradual types and compute the set of static contexts

that the gradual context represents. The concretization of a gradual datatype context produces a

set of static contexts in which unclassified data (i.e., constructors not appearing statically in any

datatype) are added to the constructor set of each open datatype. The concretization of a gradual

constructor context is the pointwise concretization of the types in each constructor’s definition.

And to accommodate for unclassified data, the produced static constructor contexts are extended

with arbitrary constructor definitions. Since different contexts can have different definitions for

the same unclassified data, the type of the arguments of unclassified data is ?. Hereafter, we mark

static contexts with a subscript S , such as ∆S , to avoid ambiguities.
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Having defined the concretization of gradual types, one can derive the notion of precision between
gradual types: a gradual type G1 is less precise than another gradual type G2 if its concretization is

a superset of that of G2.

Definition 4.1 (Type Precision). G ⊑ G ′
if and only if γ (G) ⊆ γ (G ′).

An equivalent inductive definition is given in Figure 9.

Note that for any open datatype D , we have D ⊑ ? ⊑ ? ⊑ ?. On the other hand, ? and ? → ?

are unrelated by precision.

Armed with concretization, the AGT framework gives us a direct way to lift type predicates

from the static language: a predicate holds on gradual types if there exist types in the respective

concretizations that satisfy the static predicate. For instance, the type equality judgment is lifted

into type consistency. Two gradual types are said to be consistent if they have at least one static

type in common in their denotations.

Definition 4.2 (Type consistency). G ∼ G ′ ⇔ ∃T ∈ γ (G),∃T ′ ∈ γ (G ′),T = T ′
.

Equivalently, one can characterize consistency as G ∼ G ′ ⇔ γ (G) ∩ γ (G ′) , ∅. An equivalent

inductive definition is given in Figure 9.

In addition to type equality, the statics of λD use two predicates specific to datatypes: isdata

holds if a given type is a datatype, and valid∆,Ξ holds if a match expression is valid for a given

type (recall that we consider three matching strategies, Figure 8). The consistent lifting of isdata is

simply consistency with respect to ? :
�
isdata(G) ⇔ G ∼ ? (Figure 10).

A match is valid if there exists some type in the concretization of the type of the discriminee for

which it is valid. Formally,
�
valid∆,Ξ(P ,G) ⇔ ∃∆S ∈ γ (∆), ΞS ∈ γ (Ξ), T ∈ γ (G), valid∆,Ξ(P ,T ). In

practice this means that when matching on a term whose type is gradual, patterns must be valid

for any datatype, in the case of ? or ? , or any open datatype, for ? . Moreover, if one wants to

make a match valid with respect to some open datatype (or ? ), patterns must take into account

unclassified data also: Exact and Complete matches require a default case. Furthermore, patterns

of unclassified data do not interfere with validity in any strategy, when matching a term of an

open datatype. On the other hand, if the discriminee has a static type, every matching strategy

behaves in the same way as in the static language (Exact and Complete matches cannot fail).

Importantly, in contrast to the static language, no strategy can avoid matching errors. For example,

given two closed datatypes A and B, each with a single constructor named A and B respectively,

the expression match (A :: ?) with
{
B 7→ 0

}
both typechecks and fails at runtime for any matching

strategy, because it will be valid∆,Ξ for B. Complete matches are especially relevant in the gradual

language. When the type of the discriminee is ? , match expressions can match on constructors of

multiple datatypes, enabling more dynamic programs. This is possible because unlike Sound and

Exact matches, Complete matches are not restricted to patterns from a single datatype.

Finally, to be able to lift type functions to operate on gradual types, we need to define abstraction

as the counterpart of concretization. Given a set of static types, abstraction yields the most precise

gradual type that denotes (at least) this set; its definition is straightforward (Figure 9). We can then

establish that abstraction is both sound and optimal, yielding a Galois connection, an important

property for AGT-derived languages. Equipped with abstraction, type functions such as dom and

equaten are lifted into their consistent counterparts by first concretizing their inputs and abstracting

the collection of their possible outputs. Figure 10 shows the equivalent definitions by cases. For

example, consider the consistent lifting of the functions cty∆. The first case of c̃ty∆ behaves like

the static function cty∆: constructors declared with a datatype have it as their type. The second

case assigns the unknown open datatype ? to unclassified data as long as there is an open datatype

in context. If only closed datatypes have been declared, unclassified data cannot be typed and the
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d̃om : GType⇀ GType

d̃om(G1 → G2) = G1

d̃om(?) = ?

d̃om(_) = ⊥

c̃od : GType⇀ GType

c̃od(G1 → G2) = G2

c̃od(?) = ?

c̃od(_) = ⊥

c̃ty∆ : Ctors⇀ GType

c̃ty∆(c) =


D ∃D . c ∈ ∆(D )

D ∃!D ∈ dom(∆)

? ∃D ∈ dom(∆)

⊥

l̃tyΞ : Label × Ctors⇀ GType

l̃tyΞ(l , c) =


? c < dom(Ξ)

Gi (l : G) � Ξ(c) ∧ l = li

⊥ (l : G) � Ξ(c) ∧ �i . l = li

�
fty∆,Ξ : Label × GType⇀ GType�
fty∆,Ξ(l ,D ) =

.
c ∈∆(D ) l̃tyΞ(l , c)�

fty∆,Ξ(l ,D ) =

{.
c ∈∆(D ) l̃tyΞ(l , c) hasLabel∆,Ξ(D , l)

? ¬hasLabel∆,Ξ(D , l)�
fty∆,Ξ(l , ? ) =

⊔
D ∈dom(∆)

�
fty∆,Ξ(l ,D )�

fty∆,Ξ(l , ? ) =
⊔
D ∈dom(∆)

�
fty∆,Ξ(l ,D )�

fty∆,Ξ(l , ?) = �
fty∆,Ξ(l , ? )�

fty∆,Ξ(l ,G) = ⊥

�equaten : GType
n ⇀ GType�equaten (G1, . . . ,Gn ) =

.
{G1, . . . ,Gn }�pargnΞ : Pattern⇀ (Var : GType)n

�pargnΞ(c xn ) = 
(x1 : ?) × · · · × (xn : ?) c < dom(Ξ)

(x1 : G1) × · · · × (xn : Gn ) (l1 : G1) × · · · × (lm : Gm ) � Ξ(c) ∧ n =m

⊥ (l1 : G1) × · · · × (lm : Gm ) � Ξ(c) ∧ n ,m

�
satisfylabelsnΞ(c, l1 × · · · × ln ) ⇔ c < Ξ ∨ permutation(l1 . . . ln , l

′
1
. . . l ′m )

where (l ′
1
: G1) × · · · × (l ′m : Gm ) � Ξ(c)

�
valid∆,Ξ(P ,G) ⇔ ∃∆S ∈ γ (∆), ∃ΞS ∈ γ (Ξ), ∃T ∈ γ (G), valid∆,Ξ(P ,T )

hasLabel∆,Ξ(D , l) ⇔ ∃c ∈ ∆(D ), ∃(l ′,G ′) ∈ Ξ(c), l = l ′ �
isdata(G) ⇔ G ∼ ?

Fig. 10. λD?: consistent type functions and predicates

function fails. Likewise, l̃tyΞ computes the gradual type of label for a given constructor. Every field

of unclassified data is typed with the unknown type ?. The fields of regular constructors have the

type that is declared in the constructor context. And as expected, fields not present in a constructor

cannot be typed. Finally, �equaten computes the meet of its inputs. The precision meet of two gradual

types is defined asG1⊓G2 = α(γ (G1)∩γ (G2)) [Garcia et al. 2016]. Likewise, the precision join—used

only in the algorithmic characterization of
�
fty∆,Ξ—is defined as G1 ⊔G2 = α(γ (G1) ∪ γ (G2)). We

omit the rather tedious and uninformative algorithmic definitions of join and meet.

4.3 Static Semantics of λD?
Armed with the definitions of type predicates and functions systematically derived from the

meaning of gradual types, the static semantics of the gradual language λD? follow directly. The

typing rules (Figure 11) mirror the rules of the static language, except that all predicates and

functions are replaced by their consistent counterparts. The only interesting rules are G-Ascribe,

G-Ctor, G-Access and G-Match. An ascription e ::G is well-typed (G-Ascribe) when the type of e is
consistent with G. Constructor application is well-typed (G-Ctor) when (a) its type is consistent
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Typing rules ∆;Ξ; Γ ⊢ e : G

∆;Ξ ⊢ Γ G � Γ(x)

∆;Ξ; Γ ⊢ x : G
G-Var

∆;Ξ; Γ ⊢ k : ty(k)
G-Const

∆;Ξ; Γ,x : G ⊢ e : G ′

∆;Ξ; Γ ⊢ λx :G . e : G → G ′
G-Lam

∆;Ξ; Γ ⊢ e1 : G ∆;Ξ; Γ ⊢ e2 : G
′ G ′ ∼ d̃om(G)

∆;Ξ; Γ ⊢ e1 e2 : c̃od(G)
G-App

∆;Ξ; Γ ⊢ e : G G ∼ G ′

∆;Ξ; Γ ⊢ e :: G ′
: G ′

G-Ascribe

G � c̃ty∆(c) G ∼ ? ∆;Ξ; Γ ⊢ e : G

G ∼ l̃tyΞ(l , c)
�

satisfylabelsnΞ(c, l1 × · · · × ln )

∆;Ξ; Γ ⊢ c
{
l
n
= en

}
: G

G-Ctor

∆;Ξ; Γ ⊢ e : G G ∼ ?

∆;Ξ; Γ ⊢ e .l : �fty∆,Ξ(l ,G) G-Access

∆;Ξ; Γ ⊢ e : G G ∼ ?
�
valid∆,Ξ(

{
p
}
,G)

∀i ∈ [1,n] (xi1 : Gi1) × · · · × (ximi : Gimi ) � �pargmiΞ(pi )

∆;Ξ; Γ,xi1 : Gi1, . . . , ximi : Gimi ⊢ ei : Gi

∆;Ξ; Γ ⊢ match e with
{
pn 7→ en

}
: �equaten (G1, . . . ,Gn )

G-Match

Context well-formedness ⊢ ∆ ∆ ⊢ Ξ ∆;Ξ ⊢ Γ

⊢ ·
∆-GEmpty

⊢ ∆
{
D ,D

}
∩ dom(∆) = ∅ ctors(∆) ∩C = ∅

⊢ ∆,D : C
∆-GExt

⊢ ∆

∆ ⊢ ·
Ξ -GEmpty

∆ ⊢ Ξ ∀i, j .1 ≤ i, j ≤ n, i , j =⇒ li , lj
∆ ⊢ G G ∼ �

fty∆,Ξ(l , c̃ty∆(c))

∆ ⊢ Ξ, c : (l : G)
Ξ -GExt

∆ ⊢ Ξ

∆;Ξ ⊢ ·
Γ-GEmpty

∆;Ξ ⊢ Γ ∆;Ξ ⊢ G

∆;Ξ ⊢ Γ,x : G
Γ-GExt

Program well-formedness P ok

decl, e ok ⇔ ∆ ⊢ Ξ ∧ ∆;Ξ; · ⊢ e : G where ∆ � data−ctx(decl) and Ξ � ctor−ctx(decl)

Fig. 11. λD?: static semantics

with a datatype, (b) the labels li match what we know about the constructor, and (c) the subterms

at each label have a type that is consistent with the correct type for that label. A field access e .l is
well-typed (G-Access) when the type of e is consistent with a datatype with at least one constructor

for which l is valid.
Pattern matches are well-typed (G-Match) when (a) the type of the term being matched is

consistent with a datatype, (b) the types of the branches in a context extended with the type of the

pattern bindings are consistent with each other, and (c) the patterns are valid with respect to the

type of the term being matched.

Notions of well-formedness for contexts and programs follow directly from the static definitions,

using lifted functions and predicates to deal with gradual types (Figure 11). Context construction is

unchanged from λD.
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4.4 Dynamic Semantics of λD?
In order to define the dynamic semantics of λD?, we follow the approach of Toro et al. [2019] and

introduce an auxiliary language λε
D?
, which is just a variant of λD? in which every ascription carries

the evidence that supports its validity. Evaluation of λD? consists of an elaboration to λε
D?

(akin to

a cast insertion translation [Siek and Taha 2006], but following the AGT framework), and then

the actual reduction of the elaborated λε
D?

term. We first explain the syntax, static and dynamic

semantics of λε
D?
, and then come back to the evaluation of λD? and complete its metatheory.

Syntax and Static Semantics of λε
D?. The syntax of λ

ε
D?

differs from that of λD? in the introduction
of evidence in ascriptions and values (Figure 12). Intuitively, evidences justify consistent judgments

locally, and during reduction, evidences are combined through a partial operation called consistent
transitivity. If the combination is successful, reduction proceeds; otherwise a runtime type error is

reported, denoting the clash between two mutually-incompatible local justifications.

The metavariable ε ranges over evidences: in a language where the consistency notion is sym-

metric, evidence can be represented simply by one gradual type.
4
For instance, the evidence that

? → Int is consistent with Bool → ? is the gradual type Bool → Int, i.e. the meet (relative to
precision) of both types. Evidence-augmented consistency judgments are written ε ⊩ G ∼ G ′

.

An ascription ε e :: G carries the evidence that the actual type of e is consistent with G. A value

v in λε
D?

is a raw value u ascribed to a gradual type, together with the supporting evidence. For

convenience, we write εG to denote the obvious reflexive evidence that G is consistent with itself

(i.e. εG = G).
Finally, λε

D?
introduces a new kind of runtime errors, errorT, which correspond to runtime type

errors, witnessed when reduction requires combining incompatible evidences (more below).

The typing rules of λε
D?

are almost identical to those of λD? (Figure 12). In the ascription rule,

consistency is replaced by evidence-augmented type consistency; observe how the evidence sup-

porting the consistency judgment is held in the ascription term itself. This is the key “runtime

tracking” mechanism of AGT. Additionally, the use of consistency in other rules is replaced by type

precision when the consistent judgment has one fixed gradual type. For example, in εG-Access,
G ∼ ? is replaced by G ⊑ ? .

Reduction Semantics. The reduction semantics of λε
D?

is described in Figure 12. The ascription rule

εR-AscErase, standard in evidence-based reduction semantics, is key to understand the mechanisms

of runtime type checking in this technical setting. The rule describes how an ascription surrounding

a value reduces to a single value if the two evidences can be combined through the consistent
transitivity operator. Consistent transitivity is the key runtime operator in evidence-based semantics.

It is the runtime type tracking mechanism, playing the dual role of type tags and casts in other

presentations of gradual languages; likewise, a failure of consistent transitivity corresponds to a

cast error [Garcia et al. 2016].

In our context where evidences are just gradual types, the general definition of consistent

transitivity [Garcia et al. 2016] boils down to εG1
◦ εG2

= α(γ (G1) ∩ γ (G2)). Note that this definition

coincides with the precision meet between gradual types introduced earlier: εG1
◦ εG2

= G1 ⊓G2.

In rule εR-AscErase, ε1 justifies thatGu , the type of the raw value, is consistent withG1, while ε2
justifiesG1 ∼ G2. Composition of these evidences via consistent transitivity, if defined, justifies that

Gu ∼ G2. If consistent transitivity is undefined, the reduction steps to errorT. For example, since

Int ⊓ Bool is not defined: εBool (εInt (εInt 1 :: Int) :: ?) :: Bool −→ εBool (εInt 1 :: ?) :: Bool −→

errorT. Crucially, consistent transitivity ensures that unclassified data does not “infiltrate” a closed

4
In a language with (consistent) subtyping, evidences are typically represented by a pair of gradual types [Garcia et al.

2016], likewise in languages where the consistency relation is oriented [Toro et al. 2019].
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Evidence ε ∈ GType

Expressions e ::= v | x | e e | ε e :: G | c
{
l = e

}
| match e with

{
p 7→ e

} Values v ::= ε u :: G

Raw Values u ::= k | λx :G . e | c
{
l = v

}
Errors err ::= errorM | errorA | errorT

Typing rules ∆;Ξ; Γ ⊢ e : G

∆;Ξ ⊢ Γ G � Γ(x)

∆;Ξ; Γ ⊢ x : G
εG-Var

∆;Ξ; Γ ⊢ k : ty(k)
εG-Const

∆;Ξ; Γ,x : G ⊢ e : G ′

∆;Ξ; Γ ⊢ λx :G . e : G → G ′
εG-Lam

∆;Ξ; Γ ⊢ e1 : G ∆;Ξ; Γ ⊢ e2 : d̃om(G)

∆;Ξ; Γ ⊢ e1 e2 : c̃od(G)
εG-App

∆;Ξ; Γ ⊢ e : G ε ⊩ G ∼ G ′

∆;Ξ; Γ ⊢ ε e :: G ′
: G ′

εG-Ascribe

∆;Ξ; Γ ⊢ e : l̃tyΞ(l , c)�
satisfylabelsnΞ(c, l1 × · · · × ln )

∆;Ξ; Γ ⊢ c
{
l
n
= en

}
: c̃ty∆(c)

εG-Ctor

∆;Ξ; Γ ⊢ e : G G ⊑ ?

∆;Ξ; Γ ⊢ e .l : �fty∆,Ξ(l ,G) εG-Access

∆;Ξ; Γ ⊢ e : G ′ G ′ ⊑ ?
�
valid∆,Ξ(

{
p
}
,G ′)

∀i ∈ [1,n] (xi1 : Gi1) × · · · × (ximi : Gimi ) � pargmiΞ(pi )

∆;Ξ; Γ,xi1 : Gi1, . . . , ximi : Gimi ⊢ ei : G

∆;Ξ; Γ ⊢ match e with
{
p 7→ e

}
: G

εG-Match

Reductions e −→ e or err

(εR-Beta) (ε1 (λx :G11. e) :: G1 → G2) (ε2 u :: G1) −→

{
cod(ε1)(e [(ε2 ◦ dom(ε1)) u ::G11/x]) :: G2

errorT if ε2 ◦ dom(ε1) is not defined

(εR-Delta) (ε1 k :: G1 → G2) (ε2 u :: G1) −→ cod(ε1) δ (k,u) :: G2

(εR-AscErase) ε2 (ε1 u :: G1) :: G2 −→

{
(ε1 ◦ ε2) u :: G2

errorT if ε1 ◦ ε2 is not defined

(εR-Match) match ε c
{
l = v

}
:: G with

{
p 7→ e

}
−→


ek [v/xk ] k smallest N s.t. c = ck

where ck xk � pk
errorM there is no k s.t. c = ck

(εR-Access) (ε c
{
l = v

}
:: G).l −→



(εk ◦ εG′) uk :: G ′ lk = l

where εk uk :: Gk � vk
and G ′ ��

fty∆,Ξ(lk ,G)

errorT if εk ◦ εG′ is not defined

errorA otherwise

Frames e 7−→ e or err

E ::= ε □ :: G | □ e | v □ | □.l | c
{
l = v, l = □, l = e

}
| match □ with

{
p 7→ e

}
e −→ e ′

e 7−→ e ′
εR −→

e 7−→ e ′

E[e] 7−→ E[e ′]
εRE

e −→ err

e 7−→ err
εRerr

e 7−→ err

E[e] 7−→ err
εRErr

Fig. 12. λε
D?
: Syntax, typing and dynamic semantics
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datatype at runtime, because εD ◦ ε? = D ⊓ ? is only defined if D is an open datatype (in which

case it is equal to D ).

Rule εR-Beta reduces a function application as usual if consistent transitivity between the

evidence of the argument and the domain of the function’s evidence is defined; otherwise it steps

to errorT. Rule εR-Delta takes the raw value from the ascription, performs the primitive operation

and returns the resulting raw value wrapped in an ascription, using the codomain of the operation’s

evidence.

The novel rules for dealing with datatypes are derived similarly. Rule εR-Match deals with pattern

matching: it performs an ordinary pattern match and binding on the underlying raw value, selecting

the first matching clause. Thanks to the translation function, the evidences of the discriminee’s

arguments will be at least as precise as the type expected by the pattern. A consistent transitivity

check is not necessary. Rule εR-Access reduces successfully only if consistent transitivity between

the evidence of the value and that of the expected type of the access is defined; otherwise it steps

to errorT.

Evaluation of λD?. As mentioned earlier, the evaluation of a λD? term first elaborates the term to

λε
D?
, written ∆;Ξ; · ⊢ e { eε : G, and then reduces this internal term. For a λD? term e , we write

∆;Ξ ⊢ e ⇓ v (resp. e ⇓ err) if ∆;Ξ; · ⊢ e { eε : G and eε 7→∗ v (resp. eε 7→∗ err). We often write

e ⇓ v instead of ∆;Ξ ⊢ e ⇓ v for brevity. The elaboration of λD? terms to λε
D?

terms, provided in

supplementary material, is straightforward [Toro and Tanter 2020], and very similar to a standard

cast insertion translation [Siek and Taha 2006]. It inserts ascriptions on every raw value and on

every term whose typing derivation relies on a consistent judgment, synthesizing the corresponding

evidence that supports the ascription.

To illustrate, evaluating term (Foo
{
x = 2

}
).x +1, where Foo is unclassified data, goes as follows:

(Foo
{
x = 2

}
).x + 1

{ (εInt (ε? Foo

{
x = εInt (εInt 2 :: Int) :: ?

}
:: ? ).x :: Int) + (εInt 1 :: Int)

−→ (εInt (ε? Foo

{
x = εInt 2 :: ?

}
:: ? ).x :: Int) + (εInt 1 :: Int) εInt ◦ εInt = εInt

−→ (εInt (εInt 2 :: ?) :: Int) + (εInt 1 :: Int) εInt ◦ ε? = εInt
−→ (εInt 2 :: Int) + (εInt 1 :: Int) εInt ◦ εInt = εInt
−→ εInt 3 :: Int

As another example, the transformation and evaluation of (Foo
{
x = 2

}
).x :: ? goes as follows:

(Foo
{
x = 2

}
).x :: ?

{ ε? (ε? Foo

{
x = εInt (εInt 2 :: Int) :: ?

}
:: ? ).x :: ?

−→ ε? (ε? Foo

{
x = εInt 2 :: ?

}
:: ? ).x :: ? εInt ◦ εInt = εInt

−→ ε? (εInt 2 :: ?) :: ? εInt ◦ ε? = εInt
−→ errorT εInt ◦ ε? is not defined

4.5 Metatheory of λD?
We now turn to the expected properties of λD? [Siek et al. 2015a]. First, λD? is type safe. Unlike type
safety of λD, in general in λD? programs can fail with any error err, irrespective of the selected
matching strategy.

Theorem 4.3 (Type Safety). If ∆;Ξ; · ⊢ e : G, then either e ⇓ v with ∆;Ξ; · ⊢ v : G, or e ⇓ err.

The λD? type system is equivalent to the λD type system on static programs. Specifically, we write
P static for a well-formed program P that uses neither imprecise types nor unclassified data. Let ⊢S
denote the typing judgment of λD.
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Theorem 4.4 (Static Eqivalence for Static Programs). Let P � decl, eS s.t. P static, ∆S �

data−ctx(decl) and ΞS � ctor−ctx(decl). Then ∆S ;ΞS ; · ⊢S eS : T ⇔ ∆S ;ΞS ; · ⊢ eS : T .

Additionally, for static programs, the dynamic semantics of λD? is equivalent to that of λD. Let
⇓S denote the evaluation judgment of λD.

Theorem 4.5 (Dynamic Eqivalence for Static Programs). Let P � decl, eS s.t. P static,
∆S � data−ctx(decl) and ΞS � ctor−ctx(decl). Then ∆S ;ΞS ⊢ eS ⇓S u ⇔ ∆S ;ΞS ⊢ eS ⇓ εT u :: T .

The equivalence is proven by weak bisimulation relating λD terms with λε
D?

terms that potentially

include ascriptions in sub-expressions.

Finally, λD? satisfies the gradual guarantees [Siek et al. 2015a]. First, a well-typed program

remains well-typed when made less precise. (Type precision is naturally extended to terms and

contexts.)

Theorem 4.6 (Static Gradual Guarantee). If ∆;Ξ; · ⊢ e : G, ∆ ⊑ ∆′, Ξ ⊑ Ξ′, and e ⊑ e ′, then
∆′,Ξ′, · ⊢ e ′ : G ′ where G ⊑ G ′.

Second, a program that runs without errors still does when made less precise.

Theorem 4.7 (Dynamic Gradual Guarantee). Suppose ∆;Ξ; · ⊢ e : G and ∆′,Ξ′, · ⊢ e ′ : G ′ with
∆ ⊑ ∆′, Ξ ⊑ Ξ′, and e ⊑ e ′. If e ⇓ v then e ′ ⇓ v ′ where v ⊑ v ′.

5 IMPLEMENTATION AND COMPARISON TO EXISTING LANGUAGES
We support the GSD language (Section 2) with core calculi, but core calculi alone do not make

a language! In addition to the toJSON and fromJSON builtins, our GSD examples make use of a

variety of extensions to pattern matching. Such extensions are critical enablers of a variety of

dynamic idioms, as seen in flatten [Fagan 1991; Greenberg 2019]. This section first discusses the

proof-of-concept implementation of GSD, and then compares GSD to existing approaches.

5.1 Implementation
We provide a reference interpreter for GSD, written in Haskell. An online demo of the interpreter

can be found at https://pleiad.cl/gsd . The goal of the interpreter is not to be a practical and efficient

implementation of GSD, but rather a reference implementation and exploration tool for further

research. In particular, the interpreter outputs an interactive execution trace, which can display

evidences and ascriptions from the intermediate language.

The interpreter implementation is very close to the formal calculi described in this article. GSD

is composed of two languages: GSDCore and GSDEv, corresponding to λD? and λ
ε
D?
, respectively.

Interpretation consists of four main phases: parsing and desugaring source code intoGSDCore, type

checking GSDCore, elaborating GSDCore to GSDEv, and reducing GSDEv. The implementations

of the typechecker and elaborator directly follow the corresponding rules for λD?. In order to collect

step-by-step reduction traces, the final reduction phase is implemented as a CEK machine [Felleisen

and Friedman 1986], closely following the reduction rules for λε
D?
. The Galois connection used

to derive the various elements of the gradual language is not used directly in any part of the

interpreter; instead, consistent predicates and functions are implemented using their equivalent

inductive characterizations.

The performance of gradually-typed languages is a research area in itself [Bauman et al. 2017;

Campora et al. 2018; Greenman et al. 2019; Herman et al. 2010; Kuhlenschmidt et al. 2019; Siek

and Wadler 2010; Siek et al. 2015b; Takikawa et al. 2016], and we have so far not explored how to

best implement gradually-structured data. First of all, the dynamic semantics derived with AGT

as presented here are not space efficient: evidence transitivity checks accumulate in tail calls and
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Scheme D struct ✓ ✓ ✓ ✓ ✓ N/A × × ✓
Typed Racket G ctor, sets ✓ ✓ ✓ ✓ ✓ ✓ × declared ✓

CDuce G sets ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
OCaml S types ✓ ✓ ✓ × × variants × declared ×

Scala S ✓ sets ✓ ✓ × ✓ ✓ N/A sealed ×

Rust S ✓ × ✓ ✓ ✓ × × N/A ✓ ×

Elm S ✓ × ✓ ✓ × × × N/A ✓ ×

GSD G ✓ ✓ ✓ NYI NYI NYI ? ✓ declared ✓

Fig. 13. Language feature comparison. Languages are loosely ordered from dynamic to static, with GSD last. N/A

means “not applicable”; NYI means “not yet implemented”. Typed: Dynamic, Static, or Gradual types. Declared: statically
declared datatypes; Scheme declares structs but not symbols in S-expressions; OCaml’s polymorphic variants are ad-hoc;

others declare only constructors (ctor) or sets of types (sets). Unclassified: ad hoc constructors, like S-expressions or

polymorphic variants. Default: catch-all cases. Values: match on non-constructors. Arity: match on some prefix of positional

arguments or selection of record fields. Reflect: match on type of value. Multiple: constructors can belong to more than

one declared type. Uniform: no distinction between declared and ad hoc constructors. Exhaustive: static checking of

exhaustiveness. ? : type characterizing data.

are only resolved after a call returns. Recent work shows how to achieve space efficiency with

AGT [Bañados Schwerter et al. 2021; Toro and Tanter 2020], and the technique directly applies

to the semantics presented here. The novel implementation challenge introduced by GSD is the

representation of datatypes. Static datatypes can often be given very efficient representations, but

open datatypes and dynamically-generated constructors will require more information at runtime.

Additionally, while the decision of having a fixed global context simplifies the formalization,

it is a strong assumption for a real programming language. For instance, implementing separate

compilation would be challenging.

5.2 Comparison to Existing Languages
We now review the broad range of approaches to pattern matching that already exist (Figure 13).

A brief disclaimer: we bias the listed features to those relevant to GSD; a full of analysis of data

structuring mechanisms would be a serious endeavor in itself.

Scheme. Scheme is the mainstream programming language most closely resembling the lambda

calculus. Scheme lacks algebraic datatype definitions. The language comes with lists and a notion of

symbol sufficient to encode tagged data: S-expressions are lists where the first element is a symbol

(representing the name of a constructor) and possibly more values (representing arguments to that

constructor). Extensions add features like record types [Kelsey 1999] and pattern matching [Godek

2020]. Even with these extensions, the standard approach for semi-structured data in Scheme is to

use S-expressions.

Typed Racket. Typed Racket is a dynamic-first gradual type system for Racket, a Scheme-like

language [Tobin-Hochstadt et al. 2014]. Typed Racket’s static checking uses occurrence typing to

statically guarantee type safety and exhaustive checking [Tobin-Hochstadt and Felleisen 2008].

The type system is based on union types, which accommodate unclassified data as in Scheme, i.e.,

tagged data as S-expressions. Typed Racket encodes open datatypes using union types and the

type Any, comparable to ?. Constructors and datatypes are declared separately. Every constructor is
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in some sense a singleton type, and there is no restriction on how many types a constructor can

belong to.

CDuce. CDuce is a pure functional programming language with set-theoretic types [Benzaken

et al. 2003], which excels at working with unstructured data. CDuce makes no distinction between

defined and undefined constructors. In fact, there is no way to statically define constructors at all!

Constructors are encoded as tagged data like in Scheme. As in Typed Racket, each constructor has

its own singleton type, and it can belong to multiple named datatypes. CDuce allows the same

constructor name to be used with different argument types, and programmers can match against

types. CDuce’s set-theoretic types go well beyond Typed Racket: intersection and negation allow

for very precise types. For an example, see Greenberg [2019].

OCaml. In addition to standard algebraic datatypes, OCaml also supports two relaxed notions

of datatype: polymorphic variants [Garrigue 1998], a disciplined static approach to unclassified

data; and extensible variants [Leroy et al. 2021]. Extensible variants, unsurprisingly, are variant

types that can be extended with new constructors and use the conventional (static) constructor

syntax. The exn type (used for exceptions) is a built-in example of an extensible variant, for which

programmers can introduce new constructors.

There are two main distinctions between GSD and OCaml’s polymorphic variants: (a) how

polymorphic variants inhabit types and (b) how polymorphic variants can be matched. In GSD, the

closest corresponding idea is ? , which represents open datatypes. There is no way in GSD to name

a type of some particular bounded set of unclassified constructors, but OCaml can approximate

? by using lower bounds (∼ in Figure 13): [>`Foo] represents all types that have at least the

constructor `Foo. OCaml reasons well about such bounded sets: functions can be annotated with

the exact set of polymorphic variants they expect, or with upper or lower bounds; these bounds

can even be inferred. In contrast to unclassified data in GSD, polymorphic variants do not mix

with regular variants in a pattern match. Such a distinction can be an advantage: typos of declared

constructors are caught as syntax errors by the compiler. GSD makes no such distinction, handling

any constructed data in the same match expression, irrespective of whether its classified or not—

allowing for a smoother transtition from a dynamic program to a more static one at the expense of

some static checking.

We do not include Haskell in the table, but its affordances are similar to OCaml. Haskell lacks

polymorphic and extensible variants, but features a Dynamic type that provides for a limited but

highly structured notion of reflection.

Scala. Scala is a statically typed programming language that combines functional and object-

oriented programming [Odersky et al. 2006]. Scala’s case classes are akin to algebraic datatypes,

and can be matched on. Classes are open by default and can be extended with multiple case classes.

Pattern matches on open classes cannot be checked for exhaustiveness, since case classes can be

extended from outside their declaring file. But case classes marked as sealed can only be extended

from within their source file—in this case, the compiler checks for exhaustiveness. GSD makes

similar tradeoffs between allowing openness and checking exhaustiveness. While Scala does not

support ad-hoc constructors, it offers great extensibility for datatypes: the programmer can extend

one datatype with another; set-theoretic types like union (of arbitrary types) and intersection (of

traits) cover some ad hoc use cases.

Rust. Rust is a safe systems programming language [Klabnik and Nichols 2018]. Its type system

uses substructural types to enforce an ownership discipline—these powerful features have no

real bearing in our setting. Rust’s enums resemble algebraic datatypes, and are significantly more

expressive than enums in C or C++. Like C and C++, though, Rust offers ways for programmers to

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 126. Publication date: October 2021.



Gradually Structured Data 126:25

control the representation of enums, e.g., assigning them integer values. Rust pattern matching is

expressive, with convenient forms for matching only parts of a datatype as well as keywords for

managing memory dereference as part of pattern matches. Because of its low-level target, Rust

doesn’t offer much in the way of runtime reflection.

Elm. Elm is a pure functional language that compiles to JavaScript [Czaplicki and Chong 2013]. Elm

takes static checking seriously: incomplete pattern matches are an error. Of the static languages

considered, Elm offers the least flexibility: Elm offers no reflection of any kind; release builds forbid

debug logging and exceptions; the built-in definitions and libraries force users to handle errors

with option types. We do not include them in the table, but Coq, Agda, and other total languages

are similar to Elm.

6 RELATEDWORK
We now expand on two lines of related work: work on datatypes, and work on gradual types.

Algebraic datatypes are a fixture of typed functional programming—and they are increasingly

found in other languages, too [Klabnik and Nichols 2018; Odersky et al. 2006]. Several ways of

extending datatypes with new variants have been explored beyond those discussed above, including

in the gradual typing literature.

Garrigue [1998] uses polymorphic variants to encode extensible datatypes: programmers can

match on variants that are not defined in any datatype, bounding the accepted variants of a function

at the type level. Zenger and Odersky [2001] define a way of modeling extensible algebraic datatypes

with defaults in an object-oriented language. Datatypes are modeled as classes and every extension,

with potentially multiple variants, as a subclass of the extended datatype. It is said to be “with

defaults”, by the way it implements pattern matching. When doing pattern matching on a subclass,

if no pattern holds then the default case does a supercall. Datatypes are extensible: programmers

introduce new variants using inheritance and interfaces. These extensions are said to be linear, since

each extension brings only the variants of its superclass. Linearity ensures that pattern matches

cannot fail at runtime. But because extensions are all statically declared, they cannot account for

dynamically discovered unclassified data.

Gradual typing per se is relatively recent, but attempts to unify dynamically and statically typed

programming go back at least to the 1990s. We have already discussed several systems in Section 5;

we discuss a few more here.

Garcia et al. [2016] develop gradual rows, which are rows with possible extra unknown fields.

Extending our system with gradual rows would have complicated the formalism, but would have

allowed for not only extensible datatypes, but constructors with gradual arity. Sekiyama and Igarashi

[2020] describe a gradual language with row types and row polymorphism. They support gradual

variants: like GSD and unlike polymorphic variants, there is no special syntax for static constructors.

They can bound input or output variants of a function using row polymorphism [Wand 1991]. Row

types are very expressive, but they come with more metatheoretical baggage. They use scoped

labels [Leijen 2017], which lead to an operational semantics that does not directly correspond to an

efficient implementation.

Siek and Tobin-Hochstadt [2016], Castagna and Lanvin [2017] and [Toro and Tanter 2017]

describe gradual languages with union types, under different forms. Union types are a set-theoretic

alternative to algebraic datatypes. As seen in the discussion of Typed Racket and CDuce (Section 5),

union types are often more flexible than algebraic approaches: a single constructor can appear in

multiple types, and type unions canmix primitive values like numbers or booleans with constructors.

We don’t support true unions or pattern matching on anything but constructors in GSD, but we can

simulate some aspects of union types using the unknown datatype ? , where match expressions

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 126. Publication date: October 2021.



126:26 Stefan Malewski, Michael Greenberg, and Éric Tanter

have cases for the relevant variants. GSD has no way to statically differentiate between Bool ∪ Foo

and Bool ∪ Bar: both are simply ? . However, λD? facilitates working with unclassified data that

is explicitly not yet defined: even with negation, it is challenging to concisely express the idea of

“constructor that does not appear statically in closed datatypes”.

Jafery and Dunfield [2017] develop gradual datasort refinements with sum types to eliminate

pattern matching errors. The range of graduality they support is much more static than what we

study here: the dynamic language is ML-like, and the static language has datasort refinements,

i.e., type-level reasoning about subsets of datatype constructors. Our notion of valid∆,Ξ is related;

it would be interesting to combine our work and theirs for a “full spectrum” system that ranges

from no guarantees (Scheme-like) to some guarantees (ML-like) to strong guarantees (datasort

refinements).

7 CONCLUSION
Gradual typing aims to reconcile dynamic and static approaches, but has not yet confronted a

critical, defining feature of statically-typed programming languages: algebraic datatypes. After

defining a simple calculus with support for nominal algebraic datatypes, we use AGT [Garcia et al.

2016] to derive λD?, a core calculus for GSD, a language for gradually structured data. Our design

hinges on carefully separating open and closed datatypes, and introducing two new unknown types,

? as the ground type of data, and ? , the unknown open datatype. Gradually structured data lets

programmers handle data at different levels of static precision: from ad hoc and semi-structured or

“tagged” data all the way up to fully statically defined algebraic datatypes. GSD achieves all of this

while using a very simple type system. In addition to the metatheory of λD?, we implemented a

reference interpreter for GSD and illustrated how GSD handles the evolution of a basic web server.

There is much left to be done. Our implementation of GSD is an interpreter, not a compiler,

and we have not yet attempted to improve space or time performance. We build our account of

name generation into primitives like fromJSON, and we can imagine much more robust ways of

constraining the shape of unclassified data to, e.g., some particular number or pattern of arguments.

Finally, real languages support interesting extensions of datatypes, like GADTs and typeclasses.

Accounting for these features is important but challenging. Overall, we show that even with simple

types, gradually structured data is an expressive and flexible approach.
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