
Data Structures
Hash Tables

CS284

1 / 36



Hash Tables

I Goal

Access an entry based on its key, not its location

I Highlight of hash table:

I Retrieve an entry in constant time (on average, O(1))

2 / 36



Hash Codes and Index Calculation

Basis: transform the item’s key value into a table index

Hash Codes and Index Calculation

The basis of hashing is to transform the item’s key 
value into an integer value (its hash code) which is 
then transformed into a table index

I A good hash function should be:

I relatively simple and efficient to compute
I each table index should be equally likely for each key

3 / 36



Index Calculation

Hash Codes and Index Calculation

The basis of hashing is to transform the item’s key 
value into an integer value (its hash code) which is 
then transformed into a table index

Typically two parts:

I Hash code computation

I Index calculation using the hash code

4 / 36



Example

I Consider the Huffman code problem

I Determine the frequency with which
a character occurs in a text

I If a text contains only ASCII values,
which are the first 128 Unicode values,
we could use a table of size 128 and
let its Unicode value be its location in
the table

I You would compute the index using

int index = asciiChar

I Eg. the index for “A” would be 65

Hash Codes and Index Calculation 
(cont.) 

!  Consider the Huffman code 
problem from chapter 6 

!  If a text contains only ASCII values, 
which are the first 128 Unicode 
values we could use a table of size 
128 and let its Unicode value  
be its location in the table 
  int index = asciiChar; 

 

33 

 . . .  . . . 

65 A, 8 

66 B, 2 

67 C, 3 

68 D, 4 

69 E, 12 

70 F, 2 

71 G, 2 

72 H, 6 

73 I, 7 

74 J, 1 

75 K, 2 

 . . . . . . 

5 / 36



Example

I However, what if all 65,536 Unicode
characters were allowed?

I If you assume that on average 100
characters were used, you could use a
table of 200 characters and compute
the index by
int index = unicode % 200

Hash Codes and Index Calculation (cont.)

However, what if all 65,536 
Unicode characters were 
allowed?   
If you assume that on average 
100 characters were used,  you 
could use a table of 200 
characters and compute the 
index by: 

 int index = unicode % 200

 . . .  . . .

65 A, 8

66 B, 2

67 C, 3

68 D, 4

69 E, 12

70 F, 2

71 G, 2

72 H, 6

73 I, 7

74 J, 1

75 K, 2

 . . . . . .

6 / 36



Methods for Generating Hash Codes

I If a text contains this snippet:

...mañana (tomorrow), I’ll finish my program...

I Given the following Unicode values:
Hexadecimal Decimal Name Character

0x0029 41 right parenthesis )

0x00F1 241 small letter n with tilde ñ

I The indices for letters ’ñ’ and ’)’ are both 41:

41 % 200 = 41 and 241 % 200 = 41

I This is called a collision; we will discuss how to deal with
collisions shortly

7 / 36



Hash Function Examples

I Phone numbers

I Bad: first three digits
I Better: last three digits

I Social Security numbers

I Bad: first three digits
I Better: last three digits

I Strings

I Bad: summing the int values of all characters (returns the
same hash code for “sign” and “sing”)

I Better: Account for position of characters as well (continued)

8 / 36



Java and hashcode()

I All classes implement hashCode()

I It returns a 32-bit int (between -2147483648 and 2147483647)

I A simple hash function that can be uses as a table index:

I Example:

String s = "call";
int code = s.hashCode();
int hash = code % M;

I Note:
I hash could be negative
I Use ((code & 0x7fffffff) % M) as array index
I This sets the sign bit to positive

9 / 36



Java HashCode Method for String Class

I Java provides default implementation of hashCode()

I Some classes override it (eg. String, URL, Integer, Date)

I String.hashCode() returns the integer calculated by:

s0 ∗ 31(n−1) + s1 ∗ 31(n−2) + ... + sn−1

where si is i-th character of the string, and n its length

I “Cat” has a hash code of: ‘C’ * 312 + ‘a’ * 31 + ‘t’ = 67,510
I 31 is a prime number, and prime numbers generate relatively

few collisions

public int hashCode() {
int hash = 0;
for (int i = 0; i < length(); i++) {
hash = s[i] + (31 * hash);

}
return hash;

}

10 / 36



Hash Tables

Organising Hash Tables – Open Addressing

Organising Hash Tables – Chaining

Performance

11 / 36



Open Addressing

I We now consider two ways to organize hash tables:

I open addressing
I chaining

I In open addressing, linear probing can be used to access the
value associated to a key k in a hash table

I If the index calculated for k is occupied by an item (k,v), we
have found the item

I If that element contains an item with a different key (k’,v),
increment the index by one

I Keep incrementing until you find the key or a null entry
(assuming the table is not full)

12 / 36



The Algorithm – Find(Key k)

Compute index by taking hashcode of k % table.length
if (table[index]==null) {

item is not in the table
} else if (table[index]==(k,v)) {

the item is in the table
} else {

Continue to search the table by incrementing the index until
either k or a null entry is found

}

I As you increment the table index, your table should wrap
around as in a circular array

13 / 36



Table Wraparound and Search Termination

I Since this method wraps around after the end of the table, you
can search the part of the table before the hash code value in
addition to the part of the table after the hash code value

I But it could lead to an infinite loop
I How do you know when to stop searching if the table is full

and you have not found the correct value?
I Stop when the index value for the next probe is the same as

the hash code value for the object

I Ensure that the table is never full by increasing its size after
an insertion when its load factor exceeds a specified threshold

14 / 36



Hash Code Insertion Example

Name hashCode() hashCode()%5
”Tom” 84274 4

”Dick” 2129869 4

”Harry” 69496448 3

”Sam” 82879 4

”Pete” 2484038 3

0.

1.

2.

3.

4. Tom

15 / 36



Implementing find

public class HashtableOpen<K, V>
extends AbstractMap<K, V>{

private Entry<K, V>[] table;
private static final int START_CAPACITY = 101;
private double LOAD_THRESHOLD = 0.75;
private int numKeys;
private int numDeletes;
private final Entry<K, V> DELETED =

new Entry<K, V>(null, null);

public static class Entry<K, V> implements Map.Entry<K, V> {

private K key;
private V value;

public Entry(K key, V value) {
this.key = key;
this.value = value;

}
// continued

16 / 36



Implementing find

@Override
public K getKey() {

return key;
}

@Override
public V getValue() {

return value;
}

@Override
public V setValue(V val) {

V oldVal = value;
value = val;
return oldVal;

}

@Override
public String toString() {

return key.toString() + "=" + value.toString();
}

}

17 / 36



Implementing find

/**
* Finds either the target key or the first empty slot in the

* search chain using linear probing.

* @pre The table is not full.

* @param key The key of the target object

* @return Position of the target or the first empty slot if

* the target is not in the table.

*/
private int find(Object key) {

int index = key.hashCode() % table.length;
if (index < 0) {

index += table.length; // Make it positive.
}
while ((table[index] != null)

&& (!key.equals(table[index].key))) {
index++;

if (index >= table.length) {
index = 0; // Wrap around.

}
}
return index;

}

18 / 36



Deleting an Item Using Open Addressing

I When an item is deleted, you cannot simply set its table entry
to null. Why?

I If we search for an item that may have collided with the deleted
item, we may conclude incorrectly that it is not in the table.

I Instead, store a dummy value or mark the location as
available, but previously occupied

I Deleted items reduce search efficiency which is partially
mitigated if they are marked as available

I You cannot simply replace a deleted item with a new item
until you verify that the new item is not in the table

19 / 36



Deleting an Item Using Open Addressing

I When an item is deleted, you cannot simply set its table entry
to null. Why?

I If we search for an item that may have collided with the deleted
item, we may conclude incorrectly that it is not in the table.

I Instead, store a dummy value or mark the location as
available, but previously occupied

I Deleted items reduce search efficiency which is partially
mitigated if they are marked as available

I You cannot simply replace a deleted item with a new item
until you verify that the new item is not in the table

19 / 36



Deleting an Item Using Open Addressing

@Override
public V remove(Object key) {

int index = find(key);
if (table[index] == null) {

return null;
}
V oldValue = table[index].value;
table[index] = DELETED;
numKeys--;
return oldValue;

}}

20 / 36



Reducing Collisions by Expanding the Table Size

I Use a prime number for the size of the table to reduce
collisions

I A fuller table results in more collisions, so, when a hash table
becomes sufficiently full, a larger table should be allocated
and the entries reinserted

I You must reinsert (rehash) values into the new table; do not
copy values as some search chains which were wrapped may
break

I Deleted items are not reinserted, which saves space and
reduces the length of some search chains

21 / 36



Reducing Collisions Using Quadratic Probing

I Linear probing tends to form clusters of keys in the hash table,
causing longer search chains

I Quadratic probing can reduce the effect of clustering

I Increments form a quadratic series (1 + 22 + 32 + ...)
I probeNum starts at 0

probeNum++;
index=(startIndex+probeNum*probeNum) % table.length

I If an item has a hash code of 5, successive values of index will
be 6 (5+1), 9 (5+4), 14 (5+9), ...

22 / 36



Reducing Collisions Using Quadratic Probing

Insert elements with hash codes 5,6,5,6,7 using

I Linear probing

I Problem: clustering

I Quadratic probing

probeNum++;
index=(startIndex+probeNum*probeNum) % table.length

I If an item has a hash code of 5, successive values of index will
be 6 (5+1), 9 (5+4), 14 (5+9), ...

23 / 36



Problems with Quadratic Probing

I Next index calculation is time-consuming, involving
multiplication, addition, and modulo division

I A more efficient way to calculate the next index is:

k += 2;
index = (index + k) % table.length;

I If initial value of k is -1, successive values of k will be 1, 3, 5,
. . .

I If the initial value of index is 5, successive value of index will
be 6 (= 5 + 1), 9 (= 5 + 1 + 3), 14 (= 5 + 1 + 3 + 5), . . .

I The proof of the equality of these two calculation methods
based on mathematical series: n2 = 1 + 3 + 5 + ... + 2n − 1

24 / 36



Problems with Quadratic Probing

I A more serious problem is that not all table elements are
examined when looking for an insertion index; this may mean
that an item can’t be inserted even when the table is not full

I It is also possible that the program will get stuck in an infinite
loop searching for an empty slot

I If the table size is a prime number and it is never more than
half full, this won’t happen

I However, requiring a half empty table wastes a lot of memory

25 / 36



Hash Tables

Organising Hash Tables – Open Addressing

Organising Hash Tables – Chaining

Performance

26 / 36



Alternative to Open Addressing – Chaining

I Each table element references a linked list that contains all of
the items that hash to the same table index

I The linked list often is called a bucket
I The approach sometimes is called bucket hashing

Chaining

Chaining is an alternative to open addressing 
Each table element references a linked list that contains 
all of the items that hash to the same table index 
! The linked list often is called a bucket 
! The approach sometimes is called bucket hashing

27 / 36



Chaining (cont.)

Advantages relative to open addressing:

I Only items that have the same value for their hash codes are
examined when looking for an object

I You can store more elements in the table than the number of
table slots (indices)

I Once you determine an item is not present, you can insert it
at the beginning or end of the list

I To remove an item, you simply delete it; you do not need to
replace it with a dummy item or mark it as deleted

28 / 36



Hash Tables

Organising Hash Tables – Open Addressing

Organising Hash Tables – Chaining

Performance

29 / 36



Performance of Hash Tables

Load factor: number of filled cells
table size

I Load factor has the greatest effect on hash table performance

I The lower the load factor, the better the performance as there
is a smaller chance of collision when a table is sparsely
populated

I If there are no collisions, performance for search and retrieval
is O(1) regardless of table size

30 / 36



Performance of Open Addressing versus Chaining

Open Addressing with Linear Probing

I Expected number of comparisons c required for finding an
item that is in a hash table with load factor L (Donald Knuth)

c = 1
2 (1 + 1

1−L)

Chaining

I If an item is in the table, on average we must examine the
table element corresponding to the item’s hash code and then
half of the items in each list

c = 1 + L
2

31 / 36



Performance of Open Addressing versus Chaining (cont.)Performance of Open Addressing versus 
Chaining (cont.)

32 / 36



Performance of Hash Tables versus Sorted Array and
Binary Search Tree

I The number of comparisons required for a binary search of a
sorted array is O(log n)

I A sorted array of size 128 requires up to 7 probes (27 is 128)
which is more than for a hash table of any size that is 90% full

I A binary search tree performs similarly

I Insertion or removal

hash table O(1) expected; O(n) worst case

sorted array O(n)

BST O(log n); worst case O(n)

33 / 36



Storage Requirements for Hash Tables, Sorted Arrays, and
Trees

I The performance of hashing is superior to that of binary
search of an array or a binary search tree, particularly if the
load factor is less than 0.75

I However, the lower the load factor, the more empty storage
cells

I there are no empty cells in a sorted array

I A binary search tree requires three references per node (item,
left subtree, right subtree), so more storage is required for a
binary search tree than for a hash table with load factor 0.75

34 / 36



Storage Requirements for Open Addressing and Chaining

I For open addressing, the number of references to items
(key-value pairs) is n (the size of the table)

I For chaining, the average number of nodes in a list is L (the
load factor) and n is the number of table elements

I Using the Java API LinkedList, there will be three references
in each node (item, next, previous)

I Using our own single linked list, we can reduce the references
to two by eliminating the previous-element reference

I Therefore, storage for n + 2L references is needed

35 / 36



Example
Open addressing

I Assume 60,000 items in the hash table, and load factor of 0.75

I This requires a table of size 80,000 and results in an expected
number of comparisons of 2.5

Chaining

I Calculating the table size n to get similar performance
2.5 = 1 + L/2
5.0 = 2 + L
3.0 = 60,000/n
n = 20,000

I A hash table of size 20,000 provides storage space for 20,000
references to lists

I There are 60,000 nodes in the table (one for each item)

I This requires storage for 140,000 references (2 x 60,000 +
20,000), which is 175% of the storage needed for open
addressing

36 / 36


	Hash Tables
	Organising Hash Tables – Open Addressing
	Organising Hash Tables – Chaining
	Performance

