
Data Structures
Sorting

CS284

1 / 30

Objectives

I To learn how to implement the following sorting algorithms:

I selection sort
I bubble sort
I insertion sort
I shell sort
I merge sort
I heapsort
I quicksort

I To understand the differences in performance of these
algorithms, and which to use for small, medium arrays, and
large arrays

2 / 30

Shell Sort: A Better Insertion Sort

Merge Sort

Heapsort

3 / 30

Shell Sort: A Better Insertion Sort

I A type of insertion sort, but with O(n3/2) or better
performance than the O(n2) sorts

I It is named after its discoverer, Donald Shell

I Can be thought of as a divide-and-conquer approach to
insertion sort

I Instead of sorting the entire array, sorts many smaller
subarrays using insertion sort before sorting the entire array

4 / 30

Algorithm – Array table of size n

gap = n/2
while (gap > 0) {
for each array element e from position gap to n-1 {

Insert e where it belongs in its subarray.
}
if (gap is 2)

then gap = 1
else gap = gap/2.2 // chosen by experimentation

}

I We shall refine line 4 in the next slide

Tracing an example

5 / 30

Refinement of Step 4, the Insertion Step

gap = n/2
while (gap > 0) {
for each array element e in array table from position gap to n-1 {
nextPos is the position of e
nextVal = table[e]
while (nextPos>gap && table[nextPos-gap]>nextVal){
Shift the element at nextPos-gap to position nextPos
nextPos = nextPost-gap

}
Insert nextVal at nextPos
}
if (gap is 2)
then gap = 1

else gap = gap/2.2 // chosen by experimentation
}

6 / 30

Analysis of Shell Sort

I Because the behavior of insertion sort is closer to O(n) than
O(n2) when an array is nearly sorted, presorting speeds up
later sorting

I This is critical when sorting large arrays where the O(n2)
performance becomes significant

I General analysis is open research problem

I Performance depends on selection of (decreasing) gap
I Our algorithm initially sets gap to n/2 and then divides by 2.2

and truncates the result
I Empirical studies show that this approach yields performance
O(5/4) or even O(n7/6), but there is no theoretical basis for
the result

7 / 30

Analysis of Shell Sort (cont.)

I If successive powers of 2 used for gap, performance is O(n2)

I If successive values for gap are based on Hibbard’s sequence,

2k − 1 (i.e. 31, 15, 7, 3, 1)

it can be proven that the performance is O(n3/2)

I Other sequences give similar or better performance

8 / 30

Code for Shell Sort

public class ShellSort {
public static <T extends Comparable <T>> void sort(T[] table) {

// Gap between adjacent elements.
int gap = table.length / 2;
while (gap > 0) {
for (int nextPos = gap; nextPos<table.length; nextPos++) {

// Insert element at nextPos in its subarray.
insert(table, nextPos, gap);

}
// Reset gap for next pass.
if (gap == 2)

{ gap = 1; }
else

{ gap = (int) (gap / 2.2); }
} // End while.

}

9 / 30

Code for Shell Sort

private static <T extends Comparable <T>>
void insert(T[] table, int nextPos, int gap) {
T nextVal = table[nextPos]; // Element to insert.

// Shift all values>nextVal in subarray down by gap.
while ((nextPos>gap-1)

&& (nextVal.compareTo(table[nextPos-gap]) < 0)) {
table[nextPos] = table[nextPos-gap]; // Shift down.
nextPos -= gap; // Check next position in subarray.

}
table[nextPos] = nextVal; // Insert nextVal.

}

10 / 30

Shell Sort: A Better Insertion Sort

Merge Sort

Heapsort

11 / 30

Merge

I A merge is a common data processing operation performed on
two sequences of data with the following characteristics

I Both sequences contain items with a common compareTo

method
I The objects in both sequences are ordered in accordance with

this compareTo method

I The result is a third sequence containing all the data from the
first two sequences

12 / 30

Merge Algorithm – leftSeq and rightSeq

Access the first item from both sequences.
while (not finished with either sequence) {

Compare the current items from the two sequences
Copy the smaller current item to the output sequence, and
access the next item from the input sequence whose item was copied.

}
Copy any remaining items from leftSeq to the output sequence.
Copy any remaining items from rightSeq to the output sequence.

13 / 30

Trace of Merge Algorithm

0 1 2 3
30 50 60 90

0 1 2 3 4
15 20 33 45 80

0 1 2 3 4 5 6 7 8

15 20 30 33 45 50 60 80 90

14 / 30

Trace of Merge Algorithm

0 1 2 3
30 50 60 90

0 1 2 3 4
15 20 33 45 80

0 1 2 3 4 5 6 7 8

15 20 30 33 45 50 60 80 90

14 / 30

Analysis of Merge

I For two input sequences containing n and m elements resp.,
each element needs to move from its input sequence to the
output sequence

I Merge time is O(n + m)

15 / 30

Code for Merge

private static <T extends Comparable<T>> void merge(T[]
outputSeq, T[] leftSeq, T[] rightSeq) {

int i = 0; // Index into the left input sequence.
int j = 0; // Index into the right input sequence.
int k = 0; // Index into the output sequence.

while (i < leftSeq.length && j < rightSeq.length) {
// Find smaller one insert into the output sequ.
if (leftSeq[i].compareTo(rightSeq[j])<0){

outputSeq[k++] = leftSeq[i++];
} else

{ outputSeq[k++] = rightSeq[j++]; }
}
// Copy remaining input from left seq. into output.
while (i < leftSeq.length) {

outputSeq[k++] = leftSeq[i++];
}
// Copy remaining input from right seq. into output.
while (j < rightSeq.length) {

outputSeq[k++] = rightSeq[j++];
}

}

16 / 30

Merge Sort

I We can modify merging to sort a single, unsorted array

1. Split the array into two halves
2. Sort the left half
3. Sort the right half
4. Merge the two

I This algorithm can be written with a recursive step

17 / 30

(recursive) Algorithm for Merge Sort

if (tableSize>1) {
halfsize = tableSize/2
Allocate a table leftTable of size halfSize
Allocate a table rightTable of size tableSize-halfSize
Copy elements from table[0..halfSize] to leftTable
Copy elements from table[halfSize+1..tableSize] to rightTable
Recursively apply merge sort to leftTable
Recursively apply merge sort to rightTable
Apply merge algorithm to leftTable and rightTable

}

I Tracing an example

0 1 2 3 4 5 6 7 8

45 50 20 60 80 15 30 33 90

18 / 30

Complexity of Merge Sort

I Merge sort time is O(n log n)

I n for the total time for merging, per level

I But it requires, temporarily, n extra storage locations

19 / 30

Code for Merge Sort

public class MergeSort {
public static <T extends Comparable <T>> void sort(T[] table) {

// A table with one element is sorted already.
if (table.length > 1) {
// Split table into halves.
int halfSize = table.length / 2;
T[] leftTable = (T[])new Comparable[halfSize];
T[] rightTable = (T[])new Comparable[table.length-halfSize];
System.arraycopy(table, 0, leftTable, 0, halfSize);
System.arraycopy(table, halfSize, rightTable, 0,

table.length - halfSize);
//Sort the halves.

sort(leftTable);
sort(rightTable);

// Merge the halves.
merge(table, leftTable, rightTable);

}
}}

20 / 30

Shell Sort: A Better Insertion Sort

Merge Sort

Heapsort

21 / 30

Heapsort

I Heapsort has the same complexity as Mergesort

I In contrast to Mergesort, Heapsort does not require any
additional storage

I As its name implies, heapsort uses a heap to store the array

I When used as a priority queue, a heap maintains a smallest
value at the top

I Naive heapsort:

I place an array’s data into a heap,
I then remove each heap item and move it back into the array

22 / 30

Naive Version of a Heapsort Algorithm

I This version of the algorithm requires n extra storage locations

Insert each value from table into a priority queue (heap).
i=0
while (priority queue is not empty) {

Remove next item from the queue
Insert it back into the array at position i
i++

}

I Tracing an example

0 1 2 3 4 5 6 7

15 20 30 45 50 60 80 90

23 / 30

Revising the Heapsort Algorithm

I We can do better in terms of space usage

I In heaps we’ve used so far, each parent node value was not
greater than the values of its children (minHeap)

I We can build a heap so that each parent node value is not less
than its children (maxHeap)

I Then,

I move the top item to the bottom of the heap
I reheap, ignoring the item moved to the bottom

I If we implement the heap as an array,

I each element removed will be placed at end of the array, and
I the heap part of the array decreases by one element

24 / 30

Algorithm for In-Place Heapsort

Build a maxHeap h by rearranging the elements in table
while (h is not empty) {

Remove the first item h by swapping it with the last item in h
Restore the heap property on h

}

I Tracing an example

0 1 2 3 4 5 6 7 8 9 10 11 12

74 66 89 6 39 29 76 32 18 28 37 26 20

25 / 30

Analysis of Heapsort

I Because a heap is a complete binary tree, it has log n levels

I Building a heap of size n requires finding the correct location
for an item in a heap with log n levels

I Each insert (or remove) is O(log n)

I With n items, building a heap is O(n log n)

I No extra storage is needed

26 / 30

Code for Heap Sort

public class HeapSort {
public static <T extends Comparable <T>> void sort(T[] table) {
buildHeap(table); // build maxHeap
shrinkHeap(table); // transform heap into a sorted array.

}

private static <T extends Comparable <T>> void buildHeap(T[] table) {
int n = 1;
while (n < table.length) {
n++; // Add a new item to the heap and reheap.
int child = n - 1;
int parent = (child - 1) / 2; // Find parent.
while (parent >= 0

&& table[parent].compareTo(table[child]) < 0) {
swap(table, parent, child);
child = parent;
parent = (child - 1) / 2;

}
}

}

27 / 30

Code for Heap Sort

private static <T extends Comparable <T>> void shrinkHeap(T[] table) {
int n = table.length;

// Invariant: table[0...n - 1] forms a heap.
// table[n...table.length - 1] is sorted.
while (n > 0) {
n--;
swap(table, 0, n);
// table[1...n - 1] form a heap.
// table[n...table.length - 1] is sorted.
int parent = 0;
while (true) {

int leftChild = 2 * parent + 1;
if (leftChild >= n) {
break; // No more children.

}

// continued

28 / 30

Code for Heap Sort

int rightChild = leftChild + 1;
// Find the larger of the two children.
int maxChild = leftChild;
if (rightChild<n // There is a right child.

&& table[leftChild].compareTo(table[rightChild])<0) {
maxChild = rightChild;

}

// If the parent is smaller than the larger child,
if (table[parent].compareTo(table[maxChild]) < 0) {

// Swap the parent and child.
swap(table, parent, maxChild);
// Continue at the child level.
parent = maxChild;

}
else { // Heap property is restored.

break; // Exit the loop.
}
}
}}

29 / 30

Code for Heap Sort

/** Swap the items in table[i] and table[j].
@param table The array that contains the items
@param i The index of one item
@param j The index of the other item

*/
private static <T extends Comparable <T>>

void swap(T[] table, int i, int j) {
T temp = table[i];
table[i] = table[j];
table[j] = temp;

}
}

30 / 30

	Shell Sort: A Better Insertion Sort
	Merge Sort
	Heapsort

