
Data Structures
Sorting

CS284

1 / 29

Objectives

I Learn how to implement the following sorting algorithms:

I selection sort
I bubble sort
I insertion sort
I shell sort
I merge sort
I heapsort
I quicksort

I Understand differences in performance of these algorithms

2 / 29

Introduction

I Sorting entails arranging data in order

I Familiarity with sorting algorithms is an important
programming skill

I The study of sorting algorithms provides insight into

I problem solving techniques such as divide and conquer
I the analysis and comparison of algorithms which perform the

same task

I While the sort algorithms are not limited to arrays, throughout
our lectures we will sort arrays for simplicity

3 / 29

Using Java Sorting Methods

I The Java API provides a class Arrays with several overloaded
sort methods for different array types

I Items to be sorted must be Comparable objects, so, for
example, int values must be wrapped in Integer objects

I The Collections class provides similar sorting methods for
Lists

I Sorting methods for arrays of primitive types are based on the
quicksort algorithm

I Sorting methods for arrays of objects and Lists are based on
the merge sort algorithm

I Both algorithms are O(n log n)

4 / 29

Selection Sort

Bubble Sort

Insertion Sort

Comparison

5 / 29

Selection Sort

I Make several passes through the array

I Select next smallest item in the array each time

I Place it where it belongs in the array

6 / 29

Trace of Selection Sort

n = number of elements in the array a

for fill = 0 to n - 2 {
posMin = index of the smallest item in

subarray a[fill..n-1]
swap(a,posMin,fill);

}

0 1 2 3 4

35 65 30 60 20

I Let’s follow the execution on the board

7 / 29

Trace of Selection Sort Refinement

n = number of elements in the array a

for fill = 0 to n - 2 {
posMin = fill
for next = fill + 1 to n - 1 {

if (a[next]<a[posMin])
posMin = next

}
swap(a,posMin,fill);

}

0 1 2 3 4

35 65 30 60 20

8 / 29

Analysis of Selection Sort

for fill = 0 to n - 2 {
posMin = fill
for next = fill + 1 to n - 1 {

if (a[next]<a[posMin])
posMin = next

}
swap(a,posMin,fill);

}

I What is the complexity?

O(n2)

I How many comparisons are performed? O(n2)

I How many exchanges are performed O(n)

9 / 29

Analysis of Selection Sort

for fill = 0 to n - 2 {
posMin = fill
for next = fill + 1 to n - 1 {

if (a[next]<a[posMin])
posMin = next

}
swap(a,posMin,fill);

}

I What is the complexity? O(n2)

I How many comparisons are performed?

O(n2)

I How many exchanges are performed O(n)

9 / 29

Analysis of Selection Sort

for fill = 0 to n - 2 {
posMin = fill
for next = fill + 1 to n - 1 {

if (a[next]<a[posMin])
posMin = next

}
swap(a,posMin,fill);

}

I What is the complexity? O(n2)

I How many comparisons are performed? O(n2)

I How many exchanges are performed

O(n)

9 / 29

Analysis of Selection Sort

for fill = 0 to n - 2 {
posMin = fill
for next = fill + 1 to n - 1 {

if (a[next]<a[posMin])
posMin = next

}
swap(a,posMin,fill);

}

I What is the complexity? O(n2)

I How many comparisons are performed? O(n2)

I How many exchanges are performed O(n)

9 / 29

Code for Selection Sort

public class SelectionSort {
public static <E extends Comparable<E>> void sort(E[] table) {
int n = table.length;
for (int fill = 0; fill < n-1; fill++) {

// Invariant: table[0...fill-1] is sorted.
int posMin = fill;

for (int next = fill + 1; next < n; next++) {
// Invariant: table[posMin] is the smallest item in
// table[fill...next-1].

if (table[next].compareTo(table[posMin]) < 0) {
posMin = next;

}
}
// Exchange table[fill] and table[posMin].
E temp = table[fill];
table[fill] = table[posMin];
table[posMin] = temp;

}
}

}

10 / 29

Selection Sort

Bubble Sort

Insertion Sort

Comparison

11 / 29

Bubble Sort

I Compares adjacent array elements and exchanges their values
if they are out of order

I Smaller values bubble up to the top of the array and larger
values sink to the bottom; hence the name

12 / 29

Trace of Bubble Sort

do
for each pair of adjacent array elements

if the values in a pair are out of order
Exchange the values

while the array in not sorted

0 1 2 3 4

60 42 75 83 27

I At the end of pass 1, the last item (i.e. the one at index 4) is
guaranteed to be in its correct position.

I There is no need to test it again in the next pass

I Where n is the length of the array, after the completion of
n − 1 passes (4, in this example) the array is sorted

13 / 29

Trace of Bubble Sort

do
for each pair of adjacent array elements

if the values in a pair are out of order
Exchange the values

while the array in not sorted

0 1 2 3 4

60 42 75 83 27

I At the end of pass 1, the last item (i.e. the one at index 4) is
guaranteed to be in its correct position.

I There is no need to test it again in the next pass

I Where n is the length of the array, after the completion of
n − 1 passes (4, in this example) the array is sorted

13 / 29

Trace of Bubble Sort

do
for each pair of adjacent array elements

if the values in a pair are out of order
Exchange the values

while the array in not sorted

0 1 2 3 4

60 42 75 83 27

I At the end of pass 1, the last item (i.e. the one at index 4) is
guaranteed to be in its correct position.

I There is no need to test it again in the next pass

I Where n is the length of the array, after the completion of
n − 1 passes (4, in this example) the array is sorted

13 / 29

Trace of Bubble Sort

I Sometimes an array will be sorted before n − 1 passes.

I This can be detected if there are no exchanges made during a
pass through the array

do
exchanges=false;
for each pair of adjacent array elements

if the values in a pair are out of order {
Exchange the values
exchanges=true;

}
while exchanges==true

14 / 29

Analysis of Bubble Sort

I The number of comparisons and exchanges is represented by
(n − 1) + (n − 2) + ... + 3 + 2 + 1

I Worst case:

I number of comparisons is O(n2)
I number of exchanges is O(n2)

I Compared to selection sort with its O(n2) comparisons and
O(n) exchanges, bubble sort usually performs worse

I If the array is sorted early, the later comparisons and
exchanges are not performed and performance is improved

I Bubble sort works best on arrays nearly sorted and worst on
inverted arrays (elements are in reverse sorted order)

15 / 29

Code for Bubble Sort

public class BubbleSort {
public static <E extends Comparable<E>> void sort(E[] table) {
int pass = 1;
boolean exchanges = false;
do {

// Invariant: Elements after table.length-pass+1
// are in place.
exchanges = false;
// Compare each pair of adjacent elements.
for (int i = 0; i < table.length - pass; i++) {

if (table[i].compareTo(table[i + 1]) > 0) {
// Exchange pair.

E temp = table[i];
table[i] = table[i + 1];
table[i + 1] = temp;
exchanges = true;

}
}
pass++;

} while (exchanges);

16 / 29

Selection Sort

Bubble Sort

Insertion Sort

Comparison

17 / 29

Insertion Sort

I Based on the technique used by card players to arrange a
hand of cards

I The player keeps the cards that have been picked up so far in
sorted order

I When the player picks up a new card, the player makes room
for the new card and then inserts it in its proper place

18 / 29

Trace of Insertion Sort (for an Array a)

for each array element from the second (nextPos = 1) to the last {
Insert a[nextPos] where it belongs in a, increasing
the length of the sorted subarray by 1 element

}

I To adapt the insertion algorithm to an array that is filled with
data, we start with a sorted subarray consisting of only the
first element

0 1 2 3 4

30 25 15 20 28

I Let’s follow the execution on the board

19 / 29

Trace of Insertion Sort

for nextPos = 1 to n-1 {
Insert a[nextPos] where it belongs in a, increasing
the length of the sorted subarray by 1 element

}

0 1 2 3 4

30 25 15 20 28

nextPos

20 / 29

Trace of Insertion Sort Refinement

for nextPos = 1 to n-1 {
nextPos is the position of the element to insert;
nextVal = a[nextPos];
while (nextPos>0 and a[nextPos-1] > nextVal) {
Shift the element at nextPos-1 to position nextPos;
nextPos--;

}
Insert nextVal at nextPos;

}

0 1 2 3 4

30 25 15 20 28

I Let’s follow the execution on the board

21 / 29

Analysis of Insertion Sort

I The insertion step is performed n − 1 times

I In the worst case, all elements in the sorted subarray are
compared to nextVal for each insertion

I The maximum number of comparisons will then be:

1 + 2 + 3 + ... + (n − 2) + (n − 1)

I which is O(n2)

22 / 29

Analysis of Insertion Sort

I In the best case (when the array is sorted already):

I only one comparison is required for each insertion
I the number of comparisons is O(n)

I The number of shifts performed during an insertion is one less
than the number of comparisons

I Or, when the new value is the smallest so far, it is the same as
the number of comparisons

23 / 29

Code for Insertion Sort

public class InsertionSort {
/** Sort the table using insertion sort algorithm.

pre: table contains Comparable objects.
post: table is sorted.
@param table The array to be sorted

*/
public static <E extends Comparable<E>>

void sort(E[] table) {
for (int nextPos = 1; nextPos < table.length; nextPos++) {
// Invariant: table[0...nextPos-1] is sorted.
// Insert element at position nextPos
// in the sorted subarray.
insert(table, nextPos);

}
}

24 / 29

Code for Insertion Sort

/** Insert the element at nextPos where it belongs
in the array.
pre: table[0...nextPos-1] is sorted.
post: table[0...nextPos] is sorted.
@param table The array being sorted
@param nextPos The position of the element to insert

*/
private static <E extends Comparable<E>>

void insert(E[] table, int nextPos) {
E nextVal = table[nextPos]; // Element to insert.
while (nextPos > 0 &&
nextVal.compareTo(table[nextPos - 1]) < 0) {

table[nextPos] = table[nextPos - 1]; // Shift down.
nextPos--; // Check next smaller element.

}
// Insert nextVal at nextPos.
table[nextPos] = nextVal;

}
}

25 / 29

Selection Sort

Bubble Sort

Insertion Sort

Comparison

26 / 29

Comparison of Quadratic Sorts

Number of comparisons Number of exchanges
Best Worst Best Worst

Selection sort O(n2) O(n2) O(n) O(n)

Bubble sort O(n) O(n2) O(1) O(n2)

Insertion sort O(n) O(n2) O(n) O(n2)

27 / 29

Comparison of Quadratic Sorts

I Insertion sort

I gives the best performance for most arrays
I takes advantage of any partial sorting in the array and uses less

costly shifts

I Bubble sort generally gives the worst performance—unless the
array is nearly sorted

I big-O analysis ignores constants and overhead

I None of the quadratic search algorithms are particularly good
for large arrays (n > 1000)

I The best sorting algorithms provide n log n average case
performance

28 / 29

Comparison of Quadratic Sorts

I All quadratic sorts require storage for the array being sorted

I However, the array is sorted in place

I While there are also storage requirements for variables, for
large n, the size of the array dominates and extra space usage
is O(1)

29 / 29

	Selection Sort
	Bubble Sort
	Insertion Sort
	Comparison

