
Introduction to Sorting
Algorithms

The Sorting Problem

• Input:

– A sequence of n numbers a1, a2, . . . , an

• Output:

– A permutation (reordering) a1’, a2’, . . . , an’ of the

input sequence such that a1’ ≤ a2’ ≤ · · · ≤ an’

Reasons to Sort…

General technique in computing:

Preprocess the data to make subsequent operations (not
just ADTs) faster

Example: Sort the data so that you can

• Find the kth largest/smallest in constant time for any k

• Perform binary search to find elements in logarithmic
time

Sorting's benefits depend on

• How often the data will change

• How much data there is

Real World versus Computer World
Sorting is a very general demand when dealing with data—
we want it in some order

• Alphabetical list of people

• List of countries ordered by population

Moreover, we have all sorted in the real world

• Some algorithms mimic these approaches

• Others take advantage of computer abilities

Sorting Algorithms have different asymptotic and constant-
factor trade-offs

• No single “best” sort for all scenarios

• Knowing “one way to sort” is not sufficient

A Comparison Sort Algorithm

We have n comparable elements in an array, and we want to
rearrange them to be in increasing order

Input:

• An array A of data records

• A key value in each data record (maybe many fields)

• A comparison function (must be consistent and total): Given keys
a and b is a<b, a=b, a>b?

Effect:

• Reorganize the elements of A such that for any i and j such that if
i < j then A[i]  A[j]

• Array A must have all the data it started with

Arrays? Just Arrays?

The algorithms we will talk about will assume that the
data is an array

• Arrays allow direct index referencing

• Arrays are contiguous in memory

But data may come in a linked list

• Some algorithms can be adjusted to work with linked lists
but algorithm performance will likely change (at least in
constant factors)

STANDARD COMPARISON SORT
ALGORITHMS

Everyone and their mother's uncle's cousin's barber's
daughter's friend has made a sorting algorithm

Sorting: The Big Picture

Simple
algorithms:

O(n2)
Fancier

algorithms:
O(n log n)

Comparison
lower bound:
(n log n)

Specialized
algorithms:

O(n)

Insertion sort
Selection sort
Bubble Sort

Shell sort
…

Heap sort
Merge sort

Quick sort (avg)
…

Bucket sort
Radix sort

Horrible
algorithms:

Ω(n2)

Bogo Sort
Stooge Sort

Brute Force Sorting Algorithms -
Selection Sort

Selection Sort Scan the array to find its smallest element and
swap it with the first element. Then, starting with the
second element, scan the elements to the right of it to find
the smallest among them and swap it with the second
elements. Generally, on pass i (0  i  n-2), find the smallest
element in A[i..n-1] and swap it with A[i]:

 A[0]  . . .  A[i-1] | A[i], . . . , A[min], . . ., A[n-1]

 in their final positions

An example follows…

Selection sort example

• Initial array:

• After 1st, 2nd, and 3rd passes:

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

value 22 18 12 -4 27 30 36 50 7 68 91 56 2 85 42 98 25

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

value -4 18 12 22 27 30 36 50 7 68 91 56 2 85 42 98 25

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

value -4 2 12 22 27 30 36 50 7 68 91 56 18 85 42 98 25

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

value -4 2 7 22 27 30 36 50 12 68 91 56 18 85 42 98 25

Selection Sort in Java

public class SelectionSortExample {

 public static void selectionSort(int[] arr){

 for (int i = 0; i < arr.length - 1; i++)

 {

 int min_index = i;

 for (int j = i + 1; j < arr.length; j++){

 if (arr[j] < arr[min_index]){

 min_index = j;//searching for
lowest index

 }

 }

 int smallerNumber = arr[min_index];

 arr[min_index] = arr[i];

 arr[i] = smallerNumber;

 }

 }

public static void main(String a[]){

 int[] arr1 = {27, 9, 6, 31, 0, -3, 4, 14};
 System.out.println("Before Selection
Sort");

 for(int i:arr1){
 System.out.print(i+" ");
 }
 System.out.println();

 selectionSort(arr1);//sorting array
using selection sort

 System.out.println("After Selection
Sort");

 for(int i:arr1){
 System.out.print(i+" ");

 }
 }
}

Analysis of Selection Sort

• Comparisons:  n2/2

• Exchanges:  n

• T(n) = O(n2)

To insert 12, we need to make
room for it by moving first 36
and then 24.

Insertion Sort

Insertion Sort

Insertion Sort

Insertion Sort

5 2 4 6 1 3

Input array

left sub-array right sub-array

at each iteration, the array is divided in two sub-arrays:

sorted unsorted

Invented by John Mauchly as early as 1946

Insertion Sort

Insertion Sort using Linked List

Insertion Sort in Java

class InsertionSort {

 void sort(int arr[])

 {

 int n = arr.length;

 for (int i = 1; i < n; ++i) {

 int key = arr[i];

 int j = i - 1;

 while (j >= 0 && arr[j] > key) {

 arr[j + 1] = arr[j];

 j = j - 1;

 }

 arr[j + 1] = key;

 }

 }

static void printArray(int arr[])
 {
 int n = arr.length;
 for (int i = 0; i < n; ++i)
 System.out.print(arr[i] + " ");

 System.out.println();
 }

 public static void main(String args[])
 {
 int arr[] = {27, 9, 6, 31, 0, -3, 4, 14};

 InsertionSort ob = new
InsertionSort();
 ob.sort(arr);

 printArray(arr);
 }
}

Insertion Sort - Worst Case Analysis

• The array is in reverse sorted order

– Always A[i] > key in while loop test

– Have to compare key with all elements to the left of the j-th position 

compare with j-1 elements  tj = j

• T(n) = O(n2) order of growth in n2

“while i > 0 and A[i] > key”

Insertion Sort vs. Selection Sort

They are different algorithms

They solve the same problem

Have the same worst-case asymptotic complexity

• Insertion-sort has better best-case complexity (when
input is “mostly sorted”)

Other algorithms are more efficient for larger arrays that
are not already almost sorted

• Insertion sort works well with small arrays

Bubble Sort
The term Bubble Sort was coined in 1962, by Iverson
Bubble Sort is not a good algorithm

• Poor asymptotic complexity: O(n2) average

• Not efficient with respect to constant factors

• If it is good at something, some other algorithm does the
same or better

However, Bubble Sort is often taught about

• Some people teach it just because it was taught to them

• Fun article to read:
Bubble Sort: An Archaeological Algorithmic Analysis,
Owen Astrachan, SIGCSE 2003

Kenneth E. Iverson (Turning Award Laureate)

Bubble Sort contd’

• Idea:
– Repeatedly pass through the array

– Swaps adjacent elements that are out of order

• Easier to implement, but slower than Insertion
sort

1 2 3 n

i

1 3 2 9 6 4 8

j

Example – Bubble Sort
1 3 2 9 6 4 8

i = 1 j

3 1 2 9 6 4 8

i = 1 j

3 2 1 9 6 4 8

i = 1 j

3 2 9 1 6 4 8

i = 1 j

3 2 9 6 1 4 8

i = 1 j

3 2 9 6 4 1 8

i = 1 j

3 2 9 6 4 8 1

i = 1 j

3 2 9 6 4 8 1

i = 2 j

3 9 6 4 8 2 1

i = 3 j

9 6 4 8 3 2 1

i = 4 j

9 6 8 4 3 2 1

i = 5 j

9 8 6 4 3 2 1

i = 6 j

9 8 6 4 3 2 1

i = 7

j

Bubble Sort in Java

import java.util.Arrays;

class Main {

 static void bubbleSort(int array[]) {

 int size = array.length;

 for (int i = 0; i < (size-1); i++) {

 boolean swapped = false;

 for (int j = 0; j < (size-i-1); j++) {

 if (array[j] > array[j + 1]) {

 int temp = array[j];

 array[j] = array[j + 1];

 array[j + 1] = temp;

 swapped = true;

 }

 }

if (!swapped)
 break;

 }
 }

 public static void main(String args[]) {

 int[] data = {27, 9, 6, 31, 0, -3, 4, 14};

 Main.bubbleSort(data);

 System.out.println("Sorted Array in
Ascending Order:");

System.out.println(Arrays.toString(data));
 }

}

Analysis of Bubble Sort

• Comparisons:  n2/2

• Exchanges:  n2/2

• T(n) = O(n2)

Our Sorting Tool

https://algorithmvisualizer.github.io/AlgoVis/

https://algorithmvisualizer.github.io/AlgoVis/

Best way to sort?

It depends!

References

• Cormen, T. H., Leiserson, C. E., Rivest, R. L., &
Stein, C. (2022). Introduction to algorithms. MIT
press.

• Aho Alfred, V., et al. Data structures and
algorithms. USA: Addison-Wesley, 1983.

• Weiss, M. A. (2012). Data structures and
algorithm analysis in Java. Pearson Education,
Inc.

• https://www.cse.unr.edu/~bebis/CS477/Lect/Inse
rtionSortBubbleSortSelectionSort.ppt

Thank you

