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4.1: Tree Concepts
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What is a Tree

A list, stack, or queue is a linear structure that consists of a sequence of 

elements. 

In Computer Science, a tree is an abstract model of a hierarchical structure

A tree consists of nodes with a parent-child relation

Applications:

➢ Organization charts

➢ File systems

➢ Programming environments
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Hierarchical Organization

Example: A university's organization
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Hierarchical File Systems

Example: File Directories
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Tree Terminology

A tree is a set of nodes, connected by edges that indicate relationships among nodes
Nodes arranged in hierarchy levels 
➢ Top level is a single node called the root, node with no parent 
➢ The height h of a nonempty tree is the length of the path from the root node to its furthest leaf
➢ The height of a tree that contains a single node is 0
➢ A node is reached from the root by a path, Path-Length is the number of edges that compose it
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Binary Trees - Each node has at most two children

Full B-Tree

A Binary Tree in 

which every 

node has 0 or 2 

children

Complete B-Tree

All levels completely 

filled with nodes 

except the last level 

and in the last level, 

all the nodes are as 

left side as possible

Perfect B-Tree

A Binary Tree in 

which all internal 

nodes have 2-

children and all the 

leaf nodes are at the 

same depth or same 

level

Balanced B-Tree

A Binary Tree in 

which height of the 

left and the right 

sub-trees of every 

node may differ by 

at most 1

Degenerate(or 

Pathological) B-Tree

A Binary Tree where 

every parent node 

has only one child 

node.
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Binary Trees

The number of nodes in a prefect binary tree as a function of the tree's height.

The height of a binary tree with n nodes that is either complete or full is log2(n + 1)

2h+1 – 1h

0

1

2
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Traversals of a Tree

Visiting a node

➢ Processing the data within a node

➢ This is the action performed on each node during traversal of a tree

A traversal can pass through a node without visiting it at that moment

➢ inorder, preorder, postorder, depth-first, and breadth-first traversals.
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Traversals of a Tree

Preorder traversal:  the current node is visited first, then recursively the left 
subtree of the current node, and finally the right subtree of the current node 
recursively
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Traversals of a Tree

Inorder traversal: visit the left subtree of the current node first recursively, 
then the current node itself, and finally the right subtree of the current node 
recursively
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Traversals of a Tree

Postorder traversal: visit the left subtree of the current node first, then the 
right subtree of the current node, and finally the current node itself

These are 

examples of a 

depth-first 

traversal.
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Traversals of a Tree

Level-order traversal: begin at the root, visit nodes one level at a time

This is an 

example of a 

breadth-first 

traversal.

https://liveexample.pearsoncmg.com/dsanimation/BSTeBook.html

https://liveexample.pearsoncmg.com/dsanimation/BSTeBook.html
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Trees Properties - Practice Questions

A complete binary tree is defined inductively as follows.

A complete binary tree of height 0 consists of 1 node which is the root.

A complete binary tree of height h+1 consists of two complete binary trees of 

height h whose roots are connected to a new root.

Let T be a complete binary tree of height h. Prove that the size of the tree (number 

of nodes in T) is 2h+1 – 1.

h

h+1
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Trees Properties - Practice Questions

Proof by Induction: let T(h) be the number of nodes of T at height h.

Base case: h=0, by definition we have only one node which is the root.

T(0) = 1 and 20+1 – 1 = 2-1 = 1

So, T(h) = 2h+1 – 1 holds for h=0

Induction hypothesis: Assume for any complete binary tree of height h the size of this 

tree is T(h) = 2h+1 – 1, h>0

Induction step: We know that a complete binary tree of height h+1 consists of two 

complete binary tree each of height h whose root are connected to a new root. i.e.,

T(h+1) = 1 + 2 T(h)

= 1 + 2(2h+1 – 1)    by induction hypothesis 

= 1 + 2h+2 – 2

= 2h+2 – 1 = 2(h+1)+1 – 1

So, T(h) = 2h+1 – 1 holds for h+1

h

h+1



17Thursday, March 24, 2022

Trees Properties - Practice Questions

Let T be a complete binary tree of height h. The height of a node in T is the 

node’s distance to a leaf (e.g., the root has height h, whereas a leaf has 

height 0).

Prove that the sum of the heights of all the nodes in T is 

2h+1 – h – 2.
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Trees Properties - Practice Questions

Proof by Induction: let S(h) be the sum of the height of all nodes in T

Base case: h=0, by definition we have only one node which is the root.

S(0) = 0 and 20+1 – 0 - 2 = 0

So, S(h) = 2h+1 – h - 2 holds for h=0

Induction hypothesis: Assume for any complete binary tree T of height h,  

S(h) = 2h+1 – h - 2, h>0

Induction step: a complete binary tree of height h+1 consists of two complete binary tree 

each of height h whose root are connected to a new root. i.e.,

S(h+1) = the height of the root + 2 S(h)

= (h+1) + 2(2h+1 – h -2)    by induction hypothesis 

= 2h+2 – h – 3 = 2(h+1)+1 – (h+1) - 2

Then, S(h) = 2h+1 – h - 2 holds for h+1

h

h+1
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4.2: Java Interfaces & Implementation 

for Trees
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Java Interfaces for Trees

Tree

The Tree interface defines common operations for trees.

https://liveexample.pearsoncmg.com/html/Tree.html
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Nodes in a Binary Tree

Let us examine the BinaryNodeInterface

And then the class BinaryNode that implement it
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An interface 
for the nodes 

in a binary tree 

package TreePackage;

interface BinaryNodeInterface < T >

{

/** Task: Retrieves the data portion of the node.

* @return the object in the data portion of the node */

public T getData ();

/** Task: Sets the data portion of the node.

* @param newData the data object */

public void setData (T newData);

/** Task: Retrieves the left child of the node.

* @return the node that is this nodes left child */

public BinaryNodeInterface < T > getLeftChild ();

/** Task: Retrieves the right child of the node.

* @return the node that is this nodes right child */

public BinaryNodeInterface < T > getRightChild ();

/** Task: Sets the nodes left child to a given node.

* @param leftChild a node that will be the left child */

public void setLeftChild (BinaryNodeInterface < T > leftChild);

/** Task: Sets the nodes right child to a given node.

* @param rightChild a node that will be the right child */

public void setRightChild (BinaryNodeInterface < T > rightChild);
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/** Task: Detects whether the node has a left child.

* @return true if the node has a left child */

public boolean hasLeftChild ();

/** Task: Detects whether the node has a right child.

* @return true if the node has a right child */

public boolean hasRightChild ();

/** Task: Detects whether the node is a leaf.

* @return true if the node is a leaf */

public boolean isLeaf ();

/** Task: Counts the nodes in the subtree rooted at this node.

*@returnthenumberof nodes in the subtree rooted at this node */

public int getNumberOfNodes ();

/** Task: Computes the height of the subtree rooted at this node.

* @return the height of the subtree rooted at this node */

public int getHeight ();

/** Task: Copies the subtree rooted at this node.

* @return the root of a copy of the subtree rooted at this node */

public BinaryNodeInterface < T > copy ();

} // end BinaryNodeInterface

An interface 
for the nodes 

in a binary 
tree 
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package TreePackage;

class BinaryNode < T > implements BinaryNodeInterface < T > {

private T data;

private BinaryNode < T > left;

private BinaryNode < T > right;

public BinaryNode () {

this (null);  // call next constructor

} // end default constructor

public BinaryNode (T dataPortion) {

this (dataPortion, null, null); // call next constructor

} // end constructor

public BinaryNode (T dataPortion, BinaryNode < T > leftChild, BinaryNode < T > rightChild) {

data = dataPortion;

left = leftChild;

right = rightChild;

} // end constructor

public T getData () {

return data;

} // end getData

public void setData (T newData) {

data = newData;

} // end setData

public BinaryNodeInterface < T > getLeftChild () {

return left;

} // end getLeftChild

public void setLeftChild (BinaryNodeInterface < T > leftChild) {

left = (BinaryNode < T > ) leftChild;

} // end setLeftChild

public boolean hasLeftChild () {

return left != null;

} // end hasLeftChild

public boolean isLeaf () {

return (left == null) && (right == null);

} // end isLeaf
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// Implementations of getRightChild, setRightChild, and hasRightChild are analogous to

// their left-child counterparts.

public BinaryNodeInterface < T > copy () {

BinaryNode < T > newRoot = new BinaryNode < T > (data);

if (left != null)

newRoot.left = (BinaryNode < T > ) left.copy ();

if (right != null)

newRoot.right = (BinaryNode < T > ) right.copy ();

return newRoot;

} // end copy

public int getHeight () {

return getHeight (this); // call private getHeight

} // end getHeight

private int getHeight (BinaryNode < T > node) {

int height = 0;

if (node != null)

height = 1 + Math.max (getHeight (node.left), getHeight (node.right));

return height;

} // end getHeight

public int getNumberOfNodes () {

int leftNumber = 0;

int rightNumber = 0;

if (left != null)

leftNumber = left.getNumberOfNodes ();

if (right != null)

rightNumber = right.getNumberOfNodes ();

return 1 + leftNumber + rightNumber;

} // end getNumberOfNodes

} // end BinaryNode
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General Trees

A node for a general tree.
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4.3: Binary Search Trees
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Binary Search Trees

A search tree organizes its data so that a search is more efficient

Binary search tree 

Nodes contain Comparable objects

A node's data is greater than the 

data in the node's left subtree

A node's data is less than the 

data in the node's right subtree

Every node in a binary search tree is the root of a binary search tree

6

92

41 8

<

>

=
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Binary Search Trees
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Binary Search Trees
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Binary Search Trees
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An Interface for the Binary Search Tree

Includes common operations of a tree

Also includes basic database operations

➢ Search

➢ Retrieve

➢ Add

➢ Remove

➢ Traverse
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An Implementation for the Binary Search Tree

BST

The BST class defines a concrete BST

https://liveexample.pearsoncmg.com/html/BST.html
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Recursively Binary Search Algorithm

Algorithm bstSearch(binarySearchTree, desiredObject)
// Searches a binary search tree for a given object.
// Returns true if the object is found.

if (binarySearchTree is empty)

return false

else if (desiredObject == object in the root of binarySearchTree)

return true

else if (desiredObject < object in the root of binarySearchTree)

return bstSearch(left subtree of binarySearchTree, desiredObject)

else

return bstSearch(right subtree of binarySearchTree, desiredObject)
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BST 

Implementation

Recursively BS 

Implementation
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Adding an Entry

(a) A binary search tree; 

(b) The same tree after adding Chad.
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Adding an Entry

Insert 101 into the following tree.
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Adding an Entry

Insert 101 into the following tree.
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Adding an Entry

Insert 101 into the following tree.

current
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Adding an Entry

Insert 101 into the following tree.

current
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Adding an Entry

Insert 101 into the following tree.

101 < 60?

current
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Adding an Entry

Insert 101 into the following tree.

101 > 60?

current
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Adding an Entry

Insert 101 into the following tree.

101 > 60?

current

parent



44

Adding an Entry

Insert 101 into the following tree.

101 > 60?

current
parent
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Adding an Entry

Insert 101 into the following tree.

101 > 60?

current
parent
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Adding an Entry

Insert 101 into the following tree.

current
parent

101 < 100 false
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Adding an Entry

Insert 101 into the following tree.

current
parent

101 > 100 true
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Adding an Entry

Insert 101 into the following tree.

current
parent

101 > 100 true
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Adding an Entry

Insert 101 into the following tree.

current
parent

101 > 100 true
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Adding an Entry

Insert 101 into the following tree.

current

parent

101 > 100 true
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Adding an Entry

Insert 101 into the following tree.

current

parent

101 > 100 true
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Adding an Entry

Insert 101 into the following tree.

current

parent
101 < 107 true
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Adding an Entry

Insert 101 into the following tree.

current

parent

101 < 107 true
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Adding an Entry

Insert 101 into the following tree.

parent

101 < 107 true

Since current.left is 
null,current becomes null
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Adding an Entry

Insert 101 into the following tree.

parent

Since current.left is 
null,current becomes null

current is null now
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Adding an Entry

Insert 101 into the following tree.

parent

Since current.left is 
null,current becomes null

101 < 107 true
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Adding an Entry

Insert 101 into the following tree.

parent

101 < 107 true



58

Adding an Entry

Insert 101 into the following tree.

parent

101 < 107 true
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Removing an Entry

The remove method must receive an entry to be matched in the tree

➢ If found, it is removed

➢ Otherwise the method returns null

Three cases

Case0: The node has no children, it is a leaf (simplest case)

Case1: The node has one child

Case2: The node has two children
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Case0: Removing an Entry, Node a Leaf

(a) Two possible 
configurations of leaf node N; 

(b) the resulting two possible 
configurations after removing 
node N.
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Case0: Removing an Entry, Node a Leaf
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Case1: Removing an Entry, Node Has One Child

(a) Two possible 
configurations of 
leaf node N; 

(b) the resulting 
two possible 
configurations 
after removing 
node N.
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Case1: Removing an Entry, Node Has One Child
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Case2: Removing an Entry, Node Has Two Children

Two possible configurations of node N that has two children.
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Removing an Entry, Node Has Two Children

Node N and its subtrees; (a) entry a is immediately before e, b is immediately 
after e; (b) after deleting the node that contained a and replacing e with a.
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Case2: Removing an Entry, Node Has Two Children

The largest entry a in node N's left subtree occurs in the subtree's rightmost node R.
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Case2: Removing an Entry, Node Has Two Children
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Case2: Removing an Entry, Node Has Two Children
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Case2: Removing an Entry, Node Has Two Children

(a) A binary search tree; (b) after removing Chad; 
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Case2: Removing an Entry, Node Has Two Children

(c) after removing Sean; (d) after removing Kathy.
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Case2: Removing an Entry, Node Has Two Children
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Removing an Entry in the Root

(a) Two possible configurations of a root that has one child;  
(b) after removing the root.
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Efficiency of Operations

It is obvious that the  complexity for the inorder, preorder, and postorder is 

O(n), since each node is traversed only once. 

Operations add, remove, getEntry require a search that begins at the root

Maximum number of comparisons is directly proportional to the height, h of 

the tree

These operations are O(h)

Thus we desire the shortest binary 

search tree we can create 

from the data

h
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Efficiency of Operations

Because the shape of a BST is determined by the 

order that data is inserted, we run the risk of 

trees that are essentially lists

So, the worst case for a single BST operation can 

be O(n), and for m operations can be O(m*n)

On average, the height of the tree is O(logn). So, 

the average time for search, insertion, deletion in 

a BST is O(logn).

In balanced BST single operation can be done 

in O(log n), and for m operations, O(m log n)
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Importance of Balance

Completely balanced

➢Subtrees of each node have exactly same height

Height balanced

➢Subtrees of each node in the tree differ in height by no more than 1

Completely balanced or height balanced trees are balanced

https://liveexample.pearsoncmg.com/dsanimation/BSTeBook.html

https://liveexample.pearsoncmg.com/dsanimation/BSTeBook.html
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Importance of Balance

Some binary trees that are height balanced.
https://liveexample.pearsoncmg.com/dsanimation/BSTeBook.html

https://liveexample.pearsoncmg.com/dsanimation/BSTeBook.html
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Assignment

Given a Binary Tree, write Java functions to check whether the 

given Binary Tree is:

a) a perfect tree

b) a full tree

c) a complete tree

d) a balanced tree

e) a degenerate tree
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Questions?
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