
by:

Abdelnasser Ouda

Email: abdelnasser @ yahoo.com

CS 284
Spring 2022

2Thursday, March 24, 2022

Unit 4: Trees

4.1: Tree Concepts

4.2: Java Interfaces & Implementation for Trees

4.3: Binary Search Trees

4.4: Heap Trees

4.5: AVL Trees

4.6: 2-3 & 2-4 Trees

4.7: Red-Black Trees

3Thursday, March 24, 2022

4.1: Tree Concepts

4Thursday, March 24, 2022

What is a Tree

A list, stack, or queue is a linear structure that consists of a sequence of

elements.

In Computer Science, a tree is an abstract model of a hierarchical structure

A tree consists of nodes with a parent-child relation

Applications:

➢ Organization charts

➢ File systems

➢ Programming environments

5Thursday, March 24, 2022

Hierarchical Organization

Example: A university's organization

6Thursday, March 24, 2022

Hierarchical File Systems

Example: File Directories

7Thursday, March 24, 2022

Tree Terminology

A tree is a set of nodes, connected by edges that indicate relationships among nodes
Nodes arranged in hierarchy levels
➢ Top level is a single node called the root, node with no parent
➢ The height h of a nonempty tree is the length of the path from the root node to its furthest leaf
➢ The height of a tree that contains a single node is 0
➢ A node is reached from the root by a path, Path-Length is the number of edges that compose it

8Thursday, March 24, 2022

Binary Trees - Each node has at most two children

Full B-Tree

A Binary Tree in

which every

node has 0 or 2

children

Complete B-Tree

All levels completely

filled with nodes

except the last level

and in the last level,

all the nodes are as

left side as possible

Perfect B-Tree

A Binary Tree in

which all internal

nodes have 2-

children and all the

leaf nodes are at the

same depth or same

level

Balanced B-Tree

A Binary Tree in

which height of the

left and the right

sub-trees of every

node may differ by

at most 1

Degenerate(or

Pathological) B-Tree

A Binary Tree where

every parent node

has only one child

node.

9Thursday, March 24, 2022

Binary Trees

The number of nodes in a prefect binary tree as a function of the tree's height.

The height of a binary tree with n nodes that is either complete or full is log2(n + 1)

2h+1 – 1h

0

1

2

10Thursday, March 24, 2022

Traversals of a Tree

Visiting a node

➢ Processing the data within a node

➢ This is the action performed on each node during traversal of a tree

A traversal can pass through a node without visiting it at that moment

➢ inorder, preorder, postorder, depth-first, and breadth-first traversals.

11Thursday, March 24, 2022

Traversals of a Tree

Preorder traversal: the current node is visited first, then recursively the left
subtree of the current node, and finally the right subtree of the current node
recursively

12Thursday, March 24, 2022

Traversals of a Tree

Inorder traversal: visit the left subtree of the current node first recursively,
then the current node itself, and finally the right subtree of the current node
recursively

13Thursday, March 24, 2022

Traversals of a Tree

Postorder traversal: visit the left subtree of the current node first, then the
right subtree of the current node, and finally the current node itself

These are

examples of a

depth-first

traversal.

14Thursday, March 24, 2022

Traversals of a Tree

Level-order traversal: begin at the root, visit nodes one level at a time

This is an

example of a

breadth-first

traversal.

https://liveexample.pearsoncmg.com/dsanimation/BSTeBook.html

https://liveexample.pearsoncmg.com/dsanimation/BSTeBook.html

15Thursday, March 24, 2022

Trees Properties - Practice Questions

A complete binary tree is defined inductively as follows.

A complete binary tree of height 0 consists of 1 node which is the root.

A complete binary tree of height h+1 consists of two complete binary trees of

height h whose roots are connected to a new root.

Let T be a complete binary tree of height h. Prove that the size of the tree (number

of nodes in T) is 2h+1 – 1.

h

h+1

16Thursday, March 24, 2022

Trees Properties - Practice Questions

Proof by Induction: let T(h) be the number of nodes of T at height h.

Base case: h=0, by definition we have only one node which is the root.

T(0) = 1 and 20+1 – 1 = 2-1 = 1

So, T(h) = 2h+1 – 1 holds for h=0

Induction hypothesis: Assume for any complete binary tree of height h the size of this

tree is T(h) = 2h+1 – 1, h>0

Induction step: We know that a complete binary tree of height h+1 consists of two

complete binary tree each of height h whose root are connected to a new root. i.e.,

T(h+1) = 1 + 2 T(h)

= 1 + 2(2h+1 – 1) by induction hypothesis

= 1 + 2h+2 – 2

= 2h+2 – 1 = 2(h+1)+1 – 1

So, T(h) = 2h+1 – 1 holds for h+1

h

h+1

17Thursday, March 24, 2022

Trees Properties - Practice Questions

Let T be a complete binary tree of height h. The height of a node in T is the

node’s distance to a leaf (e.g., the root has height h, whereas a leaf has

height 0).

Prove that the sum of the heights of all the nodes in T is

2h+1 – h – 2.

18Thursday, March 24, 2022

Trees Properties - Practice Questions

Proof by Induction: let S(h) be the sum of the height of all nodes in T

Base case: h=0, by definition we have only one node which is the root.

S(0) = 0 and 20+1 – 0 - 2 = 0

So, S(h) = 2h+1 – h - 2 holds for h=0

Induction hypothesis: Assume for any complete binary tree T of height h,

S(h) = 2h+1 – h - 2, h>0

Induction step: a complete binary tree of height h+1 consists of two complete binary tree

each of height h whose root are connected to a new root. i.e.,

S(h+1) = the height of the root + 2 S(h)

= (h+1) + 2(2h+1 – h -2) by induction hypothesis

= 2h+2 – h – 3 = 2(h+1)+1 – (h+1) - 2

Then, S(h) = 2h+1 – h - 2 holds for h+1

h

h+1

19Thursday, March 24, 2022

4.2: Java Interfaces & Implementation

for Trees

20Thursday, March 24, 2022

Java Interfaces for Trees

Tree

The Tree interface defines common operations for trees.

https://liveexample.pearsoncmg.com/html/Tree.html

21Thursday, March 24, 2022

Nodes in a Binary Tree

Let us examine the BinaryNodeInterface

And then the class BinaryNode that implement it

22Thursday, March 24, 2022

An interface
for the nodes

in a binary tree

package TreePackage;

interface BinaryNodeInterface < T >

{

/** Task: Retrieves the data portion of the node.

* @return the object in the data portion of the node */

public T getData ();

/** Task: Sets the data portion of the node.

* @param newData the data object */

public void setData (T newData);

/** Task: Retrieves the left child of the node.

* @return the node that is this nodes left child */

public BinaryNodeInterface < T > getLeftChild ();

/** Task: Retrieves the right child of the node.

* @return the node that is this nodes right child */

public BinaryNodeInterface < T > getRightChild ();

/** Task: Sets the nodes left child to a given node.

* @param leftChild a node that will be the left child */

public void setLeftChild (BinaryNodeInterface < T > leftChild);

/** Task: Sets the nodes right child to a given node.

* @param rightChild a node that will be the right child */

public void setRightChild (BinaryNodeInterface < T > rightChild);

23Thursday, March 24, 2022

/** Task: Detects whether the node has a left child.

* @return true if the node has a left child */

public boolean hasLeftChild ();

/** Task: Detects whether the node has a right child.

* @return true if the node has a right child */

public boolean hasRightChild ();

/** Task: Detects whether the node is a leaf.

* @return true if the node is a leaf */

public boolean isLeaf ();

/** Task: Counts the nodes in the subtree rooted at this node.

*@returnthenumberof nodes in the subtree rooted at this node */

public int getNumberOfNodes ();

/** Task: Computes the height of the subtree rooted at this node.

* @return the height of the subtree rooted at this node */

public int getHeight ();

/** Task: Copies the subtree rooted at this node.

* @return the root of a copy of the subtree rooted at this node */

public BinaryNodeInterface < T > copy ();

} // end BinaryNodeInterface

An interface
for the nodes

in a binary
tree

24

package TreePackage;

class BinaryNode < T > implements BinaryNodeInterface < T > {

private T data;

private BinaryNode < T > left;

private BinaryNode < T > right;

public BinaryNode () {

this (null); // call next constructor

} // end default constructor

public BinaryNode (T dataPortion) {

this (dataPortion, null, null); // call next constructor

} // end constructor

public BinaryNode (T dataPortion, BinaryNode < T > leftChild, BinaryNode < T > rightChild) {

data = dataPortion;

left = leftChild;

right = rightChild;

} // end constructor

public T getData () {

return data;

} // end getData

public void setData (T newData) {

data = newData;

} // end setData

public BinaryNodeInterface < T > getLeftChild () {

return left;

} // end getLeftChild

public void setLeftChild (BinaryNodeInterface < T > leftChild) {

left = (BinaryNode < T >) leftChild;

} // end setLeftChild

public boolean hasLeftChild () {

return left != null;

} // end hasLeftChild

public boolean isLeaf () {

return (left == null) && (right == null);

} // end isLeaf

25

// Implementations of getRightChild, setRightChild, and hasRightChild are analogous to

// their left-child counterparts.

public BinaryNodeInterface < T > copy () {

BinaryNode < T > newRoot = new BinaryNode < T > (data);

if (left != null)

newRoot.left = (BinaryNode < T >) left.copy ();

if (right != null)

newRoot.right = (BinaryNode < T >) right.copy ();

return newRoot;

} // end copy

public int getHeight () {

return getHeight (this); // call private getHeight

} // end getHeight

private int getHeight (BinaryNode < T > node) {

int height = 0;

if (node != null)

height = 1 + Math.max (getHeight (node.left), getHeight (node.right));

return height;

} // end getHeight

public int getNumberOfNodes () {

int leftNumber = 0;

int rightNumber = 0;

if (left != null)

leftNumber = left.getNumberOfNodes ();

if (right != null)

rightNumber = right.getNumberOfNodes ();

return 1 + leftNumber + rightNumber;

} // end getNumberOfNodes

} // end BinaryNode

26Thursday, March 24, 2022

General Trees

A node for a general tree.

27Thursday, March 24, 2022

4.3: Binary Search Trees

28Thursday, March 24, 2022

Binary Search Trees

A search tree organizes its data so that a search is more efficient

Binary search tree

Nodes contain Comparable objects

A node's data is greater than the

data in the node's left subtree

A node's data is less than the

data in the node's right subtree

Every node in a binary search tree is the root of a binary search tree

6

92

41 8

<

>

=

29Thursday, March 24, 2022

Binary Search Trees

30Thursday, March 24, 2022

Binary Search Trees

31Thursday, March 24, 2022

Binary Search Trees

32Thursday, March 24, 2022

An Interface for the Binary Search Tree

Includes common operations of a tree

Also includes basic database operations

➢ Search

➢ Retrieve

➢ Add

➢ Remove

➢ Traverse

33Thursday, March 24, 2022

An Implementation for the Binary Search Tree

BST

The BST class defines a concrete BST

https://liveexample.pearsoncmg.com/html/BST.html

34Thursday, March 24, 2022

Recursively Binary Search Algorithm

Algorithm bstSearch(binarySearchTree, desiredObject)
// Searches a binary search tree for a given object.
// Returns true if the object is found.

if (binarySearchTree is empty)

return false

else if (desiredObject == object in the root of binarySearchTree)

return true

else if (desiredObject < object in the root of binarySearchTree)

return bstSearch(left subtree of binarySearchTree, desiredObject)

else

return bstSearch(right subtree of binarySearchTree, desiredObject)

35

BST

Implementation

Recursively BS

Implementation

36Thursday, March 24, 2022

Adding an Entry

(a) A binary search tree;

(b) The same tree after adding Chad.

37

Adding an Entry

Insert 101 into the following tree.

38

Adding an Entry

Insert 101 into the following tree.

39

Adding an Entry

Insert 101 into the following tree.

current

40

Adding an Entry

Insert 101 into the following tree.

current

41

Adding an Entry

Insert 101 into the following tree.

101 < 60?

current

42

Adding an Entry

Insert 101 into the following tree.

101 > 60?

current

43

Adding an Entry

Insert 101 into the following tree.

101 > 60?

current

parent

44

Adding an Entry

Insert 101 into the following tree.

101 > 60?

current
parent

45

Adding an Entry

Insert 101 into the following tree.

101 > 60?

current
parent

46

Adding an Entry

Insert 101 into the following tree.

current
parent

101 < 100 false

47

Adding an Entry

Insert 101 into the following tree.

current
parent

101 > 100 true

48

Adding an Entry

Insert 101 into the following tree.

current
parent

101 > 100 true

49

Adding an Entry

Insert 101 into the following tree.

current
parent

101 > 100 true

50

Adding an Entry

Insert 101 into the following tree.

current

parent

101 > 100 true

51

Adding an Entry

Insert 101 into the following tree.

current

parent

101 > 100 true

52

Adding an Entry

Insert 101 into the following tree.

current

parent
101 < 107 true

53

Adding an Entry

Insert 101 into the following tree.

current

parent

101 < 107 true

54

Adding an Entry

Insert 101 into the following tree.

parent

101 < 107 true

Since current.left is
null,current becomes null

55

Adding an Entry

Insert 101 into the following tree.

parent

Since current.left is
null,current becomes null

current is null now

56

Adding an Entry

Insert 101 into the following tree.

parent

Since current.left is
null,current becomes null

101 < 107 true

57

Adding an Entry

Insert 101 into the following tree.

parent

101 < 107 true

58

Adding an Entry

Insert 101 into the following tree.

parent

101 < 107 true

59Thursday, March 24, 2022

Removing an Entry

The remove method must receive an entry to be matched in the tree

➢ If found, it is removed

➢ Otherwise the method returns null

Three cases

Case0: The node has no children, it is a leaf (simplest case)

Case1: The node has one child

Case2: The node has two children

60Thursday, March 24, 2022

Case0: Removing an Entry, Node a Leaf

(a) Two possible
configurations of leaf node N;

(b) the resulting two possible
configurations after removing
node N.

61Thursday, March 24, 2022

Case0: Removing an Entry, Node a Leaf

62Thursday, March 24, 2022

Case1: Removing an Entry, Node Has One Child

(a) Two possible
configurations of
leaf node N;

(b) the resulting
two possible
configurations
after removing
node N.

63Thursday, March 24, 2022

Case1: Removing an Entry, Node Has One Child

64Thursday, March 24, 2022

Case2: Removing an Entry, Node Has Two Children

Two possible configurations of node N that has two children.

65Thursday, March 24, 2022

Removing an Entry, Node Has Two Children

Node N and its subtrees; (a) entry a is immediately before e, b is immediately
after e; (b) after deleting the node that contained a and replacing e with a.

66Thursday, March 24, 2022

Case2: Removing an Entry, Node Has Two Children

The largest entry a in node N's left subtree occurs in the subtree's rightmost node R.

67Thursday, March 24, 2022

Case2: Removing an Entry, Node Has Two Children

68Thursday, March 24, 2022

Case2: Removing an Entry, Node Has Two Children

69Thursday, March 24, 2022

Case2: Removing an Entry, Node Has Two Children

(a) A binary search tree; (b) after removing Chad;

70Thursday, March 24, 2022

Case2: Removing an Entry, Node Has Two Children

(c) after removing Sean; (d) after removing Kathy.

71Thursday, March 24, 2022

Case2: Removing an Entry, Node Has Two Children

72Thursday, March 24, 2022

Removing an Entry in the Root

(a) Two possible configurations of a root that has one child;
(b) after removing the root.

73Thursday, March 24, 2022

Efficiency of Operations

It is obvious that the complexity for the inorder, preorder, and postorder is

O(n), since each node is traversed only once.

Operations add, remove, getEntry require a search that begins at the root

Maximum number of comparisons is directly proportional to the height, h of

the tree

These operations are O(h)

Thus we desire the shortest binary

search tree we can create

from the data

h

74Thursday, March 24, 2022

Efficiency of Operations

Because the shape of a BST is determined by the

order that data is inserted, we run the risk of

trees that are essentially lists

So, the worst case for a single BST operation can

be O(n), and for m operations can be O(m*n)

On average, the height of the tree is O(logn). So,

the average time for search, insertion, deletion in

a BST is O(logn).

In balanced BST single operation can be done

in O(log n), and for m operations, O(m log n)

21

12

20

15

32

24 37

40

55

56

77

95

75Thursday, March 24, 2022

Importance of Balance

Completely balanced

➢Subtrees of each node have exactly same height

Height balanced

➢Subtrees of each node in the tree differ in height by no more than 1

Completely balanced or height balanced trees are balanced

https://liveexample.pearsoncmg.com/dsanimation/BSTeBook.html

https://liveexample.pearsoncmg.com/dsanimation/BSTeBook.html

76Thursday, March 24, 2022

Importance of Balance

Some binary trees that are height balanced.
https://liveexample.pearsoncmg.com/dsanimation/BSTeBook.html

https://liveexample.pearsoncmg.com/dsanimation/BSTeBook.html

77Thursday, March 24, 2022

Assignment

Given a Binary Tree, write Java functions to check whether the

given Binary Tree is:

a) a perfect tree

b) a full tree

c) a complete tree

d) a balanced tree

e) a degenerate tree

78Thursday, March 24, 2022

Questions?

94Thursday, March 24, 2022

