Queues
CS284

/51

Structure of this week's classes

Queues

Applications

Implementation

/51

Queue

> The queue, like the stack, is a widely used data structure
» A queue differs from a stack in one important way

» A stack is LIFO list — Last-In, First-Out
» While a queue is FIFO list — First-In, First-Out

Example: Print Queue

» Operating systems use queues to
> keep track of tasks waiting for a scarce resource
> ensure tasks are carried out in the order they were generated
> Print queue: printing is much slower than the process of
selecting pages to print, so a queue is used

3/51

The Queue Interface (Sample) — java.ueiz (1/2)

public interface Queue<E> extends Collection<E> ({

// Returns entry at front of queue without removing it. If the
// queue is empty, throws NoSuchElementException
E element ()

// Insert an item at the rear of a queue
boolean offer (E item)

// Return element at front of queue without removing it; returns null
E peek ()

// Remove and return entry from front of queue; returns null if queue
E poll()

// Removes entry from front of queue and returns it if queue not empty
E remove ()

}

4/51

The Queue Interface — java.uti1 (2/2)

Note:

> Stack<E> is a class (derived from Vector) but gueue<t> is an
interface (derived from Collection)

51

Applications

/51

Simulation

Used to study the performance of a physical system by using a
physical, mathematical, or computer model of the system

Allows designers of a new system to estimate the expected
performance before building it

Can lead to changes in the design that will improve the
expected performance of the new system

Useful when the real system would be too expensive to build
or too dangerous to experiment with after its construction

System designers often use computer models to simulate
physical systems

A branch of mathematics called queuing theory studies such
problems

51

Blue Sky Airlines (BSA) Example

» Two waiting lines:

> regu lar customers

Skt > frequent flyers
w » One ticket agent
(‘y) @ » Determine average wait time for
@ Q taking passengers from waiting lines
b 'Q ;\ e » Analyze various strategies:
(Y) g @ > take turns serving passengers from
Y) both lines (one frequent flyer, one

regular, one frequent flyer, etc.)
> serve the passenger waiting the
longest
> serve any frequent flyers before
serving regular passengers

] Do

Blue Sky Airlines Example

» To run the simulation, we must keep track of the current time
by maintaining a clock set to an initial time of zero

» The clock will increase by one time unit until the simulation is
finished

» During each time interval, one or more of the following events
occur(s):

> a new frequent flyer arrives in line

> a new regular flyer arrives in line

> the ticket agent finishes serving a passenger and begins to
serve a passenger from the frequent flyer line

» the ticket agent finishes serving a passenger and begins to
serve a passenger from the regular passenger line

> the ticket agent is idle because there are no passengers to serve

51

Blue Sky Airlines Example

» We can simulate different serving strategies by introducing a
simulation variable, frequentFlyerMax (> 0)

> frequentFlyerMax represents the number of consecutive
frequent flyer passengers served between regular passengers

» When frequentFlyerMax is:

» 1, every other passenger served will be a regular passenger

» 2, every third passenger served will be a regular passenger a
very large number, any frequent flyers will be served before
regular passengers

10/51

Simulation Class Diagrams

AirlineCheckinSim

frequentFlyerMax
maxProcessingTime
totalTime

showAT1

clock

timeDone
frequentFlyersSinceRP

g

+

enterData()
runSimulation()
startServe()
showStats ()
mainQ

Queue<Passenger> Passenger
+ addQ - passengerId
+ remove() - processingTime
+ element() - arrivalTime
+ size() - maxProcessingTime
+ isEmpty() - idNum
R + getArrivalTime()
theQueue + getProcessingTime()
+ setMaxProcessingTime()
PassengerQueue
‘— regularPassengerQueue| numServed
- frequentFlyerQueue | = t°ta‘ﬂa‘t
- arrivalRate
+ getNumServed()
+ getTotalWait()
+ checkNewArrival()
+ update()

11/51

Class Passenger

import java.util.x;

public class Passenger {

// Data
/*x The
private

/*% The
private

Fields
ID number for this passenger. =/
int passengerId;

time needed to process this passenger. =/
int processingTime;

/x* The time this passenger arrives. =/

private

/*% The
private

/*x The
private

int arrivalTime;

maximum time to process a passenger. =*/
static int maxProcessingTime;

sequence number for passengers. =/
static int idNum = O;

12 /51

Class Passenger

/*% Create a new passenger.
@param arrivalTime The time this passenger arrivess/
public Passenger (int arrivalTime) {

this.arrivalTime = arrivalTime;
processingTime = 1+ (new Random()) .nextInt (maxProcessingTime) ;
passengerId = idNum++;

/*x Get the arrival time.
@return The arrival time =*/
public int getArrivalTime () {
return arrivalTime;

13/51

Class Passenger

/** Get the processing time.
@return The processing time =/
public int getProcessingTime () {
return processingTime;

/x* Get the passenger ID.
@return The passenger ID */
public int getId() {
return passengerId;

/*x Set the maximum processing time
@param maxProcessingTime The new value =/
public static void setMaxProcessingTime (int maxProcessTime) ({
maxProcessingTime = maxProcessTime;

14 /51

Class PassengerQueue

import java.util.x;

public class PassengerQueue {
// Data Fields
/*% The queue of passengers. =/
private Queue<Passenger> theQueue;

/** The number of passengers served. x/
private int numServed;

/x%* The total time passengers were waiting. =*/
private int totalWait;

/** The name of this queue. =*/
private String queueName;

/x* The average arrival rate. =/
private double arrivalRate;

15 /51

Class PassengerQueue

// Constructor
/*x Construct a PassengerQueue with the given name.

@param queueName The name of this queue
*/
public PassengerQueue (String queueName) {
numServed = 0;
totalWait = 0;
this.queueName = queueName;
theQueue = new LinkedList<Passenger> () ;

/*% Return the number of passengers served
@return The number of passengers served

x/
public int getNumServed() {
return numServed;

16 /51

Class PassengerQueue

/** Return the total wait time
@return The total wait time
*/
public int getTotalWait () {
return totalWait;

/** Return the queue name
@return - The queue name
*/
public String getQueueName () {
return queueName;

17 /51

Class PassengerQueue

/** Set the arrival rate
@param arrivalRate the value to set

*/
public void setArrivalRate (double arrivalRate) {
this.arrivalRate = arrivalRate;

/*% Determine if the passenger queue is empty
@return true if the passenger queue is empty
*/
public boolean isEmpty () {
return theQueue.isEmpty () ;

/*% Determine the size of the passenger queue
@return the size of the passenger queue
*/
public int size () {
return theQueue.size();

18 /51

Class PassengerQueue

/*% Check if a new arrival has occurred.
@param clock The current simulated time
@param showAll Flag to indicate that detailed
data should be output
x/
public void checkNewArrival (int clock, boolean showAll) {
if (Math.random() < arrivalRate) {
theQueue.add (new Passenger (clock));
if (showAll) {
System.out.println("Time is
+ clock + ": "
+ queueName
+ "arrival, new queue size is"
+ theQueue.size());

n

19/51

Class PassengerQueue

/++ Update statistics.

pre: The queue is not empty.
@param clock The current simulated time
@param showAll Flag to indicate whether to show detail
@return Time passenger is done being served

*/

public int update (int clock, boolean showAll) {
Passenger nextPassenger = theQueue.remove () ;
int timeStamp = nextPassenger.getArrivalTime () ;

int wait = clock - timeStamp;
totalWait += wait;
numServed++;

// continued

20 /51

Class PassengerQueue

if (showAll) {
System.out.println("Time is " + clock
+ ": Serving "
+ queueName
+ " with time stamp "
+ timeStamp) ;
}

return clock + nextPassenger.getProcessingTime () ;

21/

51

class AirlineCheckinSim

public class AirlineCheckinSim {

// Data Fields

/** Queue of frequent flyers. =*/

private PassengerQueue frequentFlyerQueue =
new PassengerQueue ("Frequent Flyer");

/*% Queue of regular passengers. =/
private PassengerQueue regularPassengerQueue =
new PassengerQueue ("Regular Passenger");

/*x Maximum number of frequent flyers to be served
before a regular passenger gets served. */

private int frequentFlyerMax;

/** Maximum time to service a passenger. x/
private int maxProcessingTime;

/x% Total simulated time. x/
private int totalTime;

22/51

class AirlineCheckinSim

/x% If set true, print additional output. =/
private boolean showAll;

/** Simulated clock. x/
private int clock = 0;

/*% Time that the agent will be done with the current passenger.sx/
private int timeDone;

/*% Number of frequent flyers served since the

last regular passenger was served. =*/
private int frequentFlyersSinceRP;

23 /51

class AirlineCheckinSim

private void runSimulation() {
for (clock = 0; clock < totalTime; clock++) {

frequentFlyerQueue.checkNewArrival (clock, showAll);
regularPassengerQueue.checkNewArrival (clock, showAll);
if (clock >= timeDone) {

startServe () ;

24 /51

class AirlineCheckinSim

private void startServe() {
if (!frequentFlyerQueue.isEmpty ()
&& ((frequentFlyersSinceRP <= frequentFlyerMax)
| | regularPassengerQueue.isEmpty())) {

// Serve the next frequent flyer.
frequentFlyersSinceRP++;
timeDone = frequentFlyerQueue.update (clock, showAll);
}
else if (!regularPassengerQueue.isEmpty()) {
// Serve the next regular passenger.
frequentFlyersSinceRP = 0;

timeDone = regularPassengerQueue.update (clock, showAll);

}
else if (showAll) {

System.out.println("Time is " + clock + " server is idle");

25/

51

class AirlineCheckinSim

/x* Method to show the statistics. */
private void showStats() {

System.out.println
("\nThe number of regular passengers served was

+ regularPassengerQueue.getNumServed()) ;

double averageWaitingTime =
(double) regularPassengerQueue.getTotalWait ()
/ (double) regularPassengerQueue.getNumServed();

System.out.println(" with an average waiting time of "
+ averageWaitingTime);

// continues

26 /51

class AirlineCheckinSim

System.out.println ("The number of frequent flyers served was "
+ frequentFlyerQueue.getNumServed()) ;
averageWaitingTime =
(double) frequentFlyerQueue.getTotalWait ()
/ (double) frequentFlyerQueue.getNumServed() ;
System.out.println (" with an average waiting time of "
+ averageWaitingTime);

System.out.println ("Passengers in frequent flyer queue: "
+ frequentFlyerQueue.size());

System.out.println ("Passengers in regular passenger queue:
+ regularPassengerQueue.size());

n

27/

51

Run a Simulation

You

must supply:
Expected number of frequent flyer arrivals per hour (arrival
rate is this value / 60)

Expected number of regular passenger arrivals per hour
(arrival rate is this value / 60)

The maximum number of frequent flyers served between
regular passengers (frequentFlyerMax)

Maximum service time in minutes (maxProcessingTime)

Total simulation time in minutes (totalTime)

28 /51

Run a Simulation

» Expected number of frequent flyer arrivals per hour (arrival
rate is this value / 60): 240

» Expected number of regular passenger arrivals per hour
(arrival rate is this value / 60): 120

» The maximum number of frequent flyers served between
regular passengers (frequentFlyerMax): 3

» Maximum service time in minutes (maxProcessingTime): 4

» Total simulation time in minutes (totalTime): 60

The number of regular passengers served was 5
with an average waiting time of 30.8

The number of frequent flyers served was 20
with an average waiting time of 17.4

Passengers in frequent flyer queue: 40

Passengers in regular queue: 55

29 /51

Implementation

30/51

Class vrinkearist Implements the Queue Interface

> The LinkedList class provides methods for inserting and
removing elements at either end of a double-linked list, which
means all Queue methods can be implemented easily

» The Java 5.0 LinkedList class implements the Queue interface

Queue<String> names = new LinkedList<String>();

» creates a new Queue reference, names, that stores references
to String objects

31/51

Using a Single-Linked List to Implement a Queue

> Insertions are at the rear of a queue and removals are from
the front

» We need a reference to the last list node so that insertions
can be performed at O(1)

» The number of elements in the queue is changed by methods
insert and remove

istQueue j_' Node 5~ Node f Node
—_— next = null

front = —— next = ——+ next =
data = "Jones"

rear = [—1 data = "Thome" data = "Abreu"
size = 3 1

32/51

Using a Single-Linked List to Implement a Queue

» A comment before beginning

» One might expect to start out with something like:
public class ListQueue<E> implements Queue<E> {

}

» However, since gueue is a subinterface of other interfaces
(namely, collection<kE> and Iterable<E>), many additional
operations would have to be implemented

33/51

Using a Single-Linked List to Implement a Queue

> It is best to start off with the abstract class aAbstractQueue
since it implements all operations except for:
» public boolean offer(E item)
public E poll()
public E peek()
public int size()
public Iterator<E> iterator()

vV vy VvYyy

» Our implementation shall concentrate on these

public class ListQueue<E> extends AbstractQueue<E>
implements Queue<E> {

34 /51

Using a Single-Linked List to Implement a Queue

import java.util.sx;
public class ListQueue<E> extends AbstractQueue<E>

implements Queue<E> {

// Data Fields

/*+* Reference to front of queue. =*/
private Node<E> front;

/+*+ Reference to rear of queue. x/
private Node<E> rear;

/+x* Size of queue. x/

private int size;

35/51

Using a Single-Linked List to Implement a Queue

/+x Node is building block for single-linked list. */
private static class Node<E> {

private E data;

private Node next;

/** Creates a new node with a null next field.
@param dataItem The data stored
*/
private Node (E dataltem) {
data = dataltem;
next = null;

}

/+** Creates a new node that references another node.

@param dataltem The data stored
@param nodeRef The node referenced by new node
*/
private Node (E datalItem, Node<E> nodeRef) {
data = dataltem;
next = nodeRef;
}
} //end class Node

36 /51

Using a Single-Linked List to Implement a Queue

/+* Insert an item at the rear of the queue.

post: item is added to the rear of the queue.

@param item The element to add
@return true (always successful) *x/
public boolean offer (E item) {
// Check for empty queue.

if (front == null) {
rear = new Node<E> (item);
front = rear;

}

else {

37/51

Using a Single-Linked List to Implement a Queue

else {
// Allocate a new node at end, store item in
// it, and
// link it to old end of queue.
rear.next = new Node<E> (item) ;
rear = rear.next;
}
size++;
return true;

38 /51

Using a Single-Linked List to Implement a Queue

/+* Return the item at the front of the queue without removi
@return The item at the front of the queue if successful
*/
public E peek () {
if (size == 0)
return null;
else
return front.data;

39/51

Using a Single-Linked List to Implement a Queue

/+** Remove the entry at the front of the queue and
return it if the queue is not empty.
post: front references item that was 2nd in queue.
@return Item removed if successful, null othw */
public E poll() {
E item = peek(); // Retrieve item at front.

if (item == null)
return null;

if (size==1) { // Queue has one item
front = null;
rear = null;

} else { // Queue has two or more items
front = front.next;

}

size—-—;

return item; // Return data at front of queue.

40/ 51

Implementing a Queue Using a Circular Array

» The time efficiency of using a single- or double-linked list to
implement a queue is acceptable

» However, there are some space inefficiencies

» Storage space is increased when using a linked list due to
references stored in the nodes
> Array Implementation
» Insertion at rear of array is constant time O(1)
» Removal from the front is linear time O(n) if we shift all
elements
Removal from rear of array is constant time O(1)
Insertion at the front is linear time O(n) if we shift all elements

v

v

» We can avoid these inefficiencies in a circular array

41/51

Implementing a Queue Using a Circular Array (cont.)

front = | 0}— & size = [5]

¥*
+ capacity = [5|

/

rear = [4}—-= -
g size - 4]

front = | 11— *
- capacity = [5]

A

rear = | 4—> -

42 /51

Implementing a Queue Using a Circular Array (cont.)

front = | of—- & size = [___5]

¥*
+ capacity = [5|

/

rear = [4}—-= -
g size - 4]

front = [1}—»f *
- capacity = [5]

/

rear = | 4—> -

Now we add A

42 /51

Implementing a Queue Using a Circular Array (cont.)
We add A

size

rear
front

capacity

5]
5]

LI+ | #]|>

43 /51

Implementing a Queue Using a Circular Array (cont.)

ArrayQueue g = new ArrayQueue (5);

—

front = 0 —P

rear = 4 —»

I

public ArrayQueue (int initCapacity) {

capacity = initCapacity;

theData = (E[])new Object [capacity];
front = 0;

rear = capacity - 1;

size = 0;

44 /51

Implementing a Queue Using a Circular Array (cont.)
—

front

0 —>
0"

rear

rear = 4 —»

public boolean offer (E item) ({
if (size == capacity) {
reallocate();

}

size++;
rear = (rear + 1) % capacity;
theData[rear] = item;

return true;

}

Let's see an example

45 /51

Implementing a Queue Using a Circular Array (cont.)
q.offer('«");q.offer("+’);q.offer(’/");qg.offer('-");g.offer('A");

front = 0 front = 0
rear = 0 —7
front =1

= 4 —»
rear 4 rear = 4 —>»

public boolean offer (E item) {
if (size == capacity) {
reallocate () ;

}

size++;
rear = (rear + 1) % capacity;
theData[rear] = item;

return true;

46 /51

Implementing a Queue Using a Circular Array (cont.)
next = g.poll();next = g.poll();

—

front = 0 —P *

front = 1 —¥ +

rear = 4 —» A

public E poll() ({
if (size == 0) {
return null
}
E result = theData[front];
front = (front + 1) % capacity;
size——;
return result;

47 /51

Implementing a Queue Using a Circular Array (cont.)
g.offer('B’");qg.offer(’'C’")

front = 0

front = 1
rear = 1—»

front = 2

rear = 4 —>»

public boolean offer (E item) {
if (size == capacity) {
reallocate () ;

}

size++;
rear = (rear + 1) % capacity;
theData[rear] = item;

return true;

48 /51

Implementing a Queue Using a Circular Array (cont.)

private void reallocate() {

int newCapacity = 2 * capacity;

E[] newData = (E[])new Object [newCapacity];

int j = front;

for (int i = 0; i < size; i++) {
newData[i] = theDatalj];
J = (j + 1) % capacity;

}

front = 0;

rear = size - 1;

capacity = newCapacity;

theData = newData;

49 /51

Comparing the Three Implementations

Computation time

» All three implementations (double-linked list, single-linked list,
circular array) are comparable in terms of computation time

» All operations are O(1) regardless of implementation

» Although reallocating an array is O(n), it is amortized over n
items, so the cost per item is O(1)

50 /51

Comparing the Three Implementations

Storage

v

Linked-list implementations require more storage due to the
extra space required for the links

» Each node for a single-linked list stores two references (one for
the data, one for the link)
» Each node for a double-linked list stores three references (one
for the data, two for the links)
A double-linked list requires 1.5 times the storage of a
single-linked list
A circular array that is filled to capacity requires half the
storage of a single-linked list to store the same number of
elements, but a recently reallocated circular array is half
empty, and requires the same storage as a single-linked list

All three implementations (double-linked list, single-linked list,
circular array) are comparable in terms of computation time

51/51

	Queues
	Applications
	Implementation

