
Queues
CS284

1 / 51

Structure of this week’s classes

Queues

Applications

Implementation

2 / 51

Queue

I The queue, like the stack, is a widely used data structure

I A queue differs from a stack in one important way

I A stack is LIFO list – Last-In, First-Out
I While a queue is FIFO list – First-In, First-Out

Example: Print Queue

I Operating systems use queues to
I keep track of tasks waiting for a scarce resource
I ensure tasks are carried out in the order they were generated

I Print queue: printing is much slower than the process of
selecting pages to print, so a queue is used

3 / 51

The Queue Interface (Sample) – java.util (1/2)

public interface Queue<E> extends Collection<E> {

// Returns entry at front of queue without removing it. If the
// queue is empty, throws NoSuchElementException
E element()

// Insert an item at the rear of a queue
boolean offer(E item)

// Return element at front of queue without removing it; returns null if queue empty
E peek()

// Remove and return entry from front of queue; returns null if queue empty
E poll()

// Removes entry from front of queue and returns it if queue not empty; otherwise throws NoSuchElementException
E remove()
}

4 / 51

The Queue Interface – java.util (2/2)

Note:

I Stack<E> is a class (derived from Vector) but Queue<E> is an
interface (derived from Collection)

5 / 51

Queues

Applications

Implementation

6 / 51

Simulation

I Used to study the performance of a physical system by using a
physical, mathematical, or computer model of the system

I Allows designers of a new system to estimate the expected
performance before building it

I Can lead to changes in the design that will improve the
expected performance of the new system

I Useful when the real system would be too expensive to build
or too dangerous to experiment with after its construction

I System designers often use computer models to simulate
physical systems

I A branch of mathematics called queuing theory studies such
problems

7 / 51

Blue Sky Airlines (BSA) Example

Case Study (cont.)
55

I Two waiting lines:

I regular customers
I frequent flyers

I One ticket agent

I Determine average wait time for
taking passengers from waiting lines

I Analyze various strategies:

I take turns serving passengers from
both lines (one frequent flyer, one
regular, one frequent flyer, etc.)

I serve the passenger waiting the
longest

I serve any frequent flyers before
serving regular passengers

8 / 51

Blue Sky Airlines Example

I To run the simulation, we must keep track of the current time
by maintaining a clock set to an initial time of zero

I The clock will increase by one time unit until the simulation is
finished

I During each time interval, one or more of the following events
occur(s):

I a new frequent flyer arrives in line
I a new regular flyer arrives in line
I the ticket agent finishes serving a passenger and begins to

serve a passenger from the frequent flyer line
I the ticket agent finishes serving a passenger and begins to

serve a passenger from the regular passenger line
I the ticket agent is idle because there are no passengers to serve

9 / 51

Blue Sky Airlines Example

I We can simulate different serving strategies by introducing a
simulation variable, frequentFlyerMax (> 0)

I frequentFlyerMax represents the number of consecutive
frequent flyer passengers served between regular passengers

I When frequentFlyerMax is:

I 1, every other passenger served will be a regular passenger
I 2, every third passenger served will be a regular passenger a

very large number, any frequent flyers will be served before
regular passengers

10 / 51

Simulation Class Diagrams

Case Study: Design (cont.)
63

11 / 51

Class Passenger

import java.util.*;

public class Passenger {
// Data Fields
/** The ID number for this passenger. */
private int passengerId;

/** The time needed to process this passenger. */
private int processingTime;

/** The time this passenger arrives. */
private int arrivalTime;

/** The maximum time to process a passenger. */
private static int maxProcessingTime;

/** The sequence number for passengers. */
private static int idNum = 0;

12 / 51

Class Passenger

/** Create a new passenger.
@param arrivalTime The time this passenger arrives*/

public Passenger(int arrivalTime) {
this.arrivalTime = arrivalTime;
processingTime = 1+(new Random()).nextInt(maxProcessingTime);
passengerId = idNum++;

}
/** Get the arrival time.

@return The arrival time */
public int getArrivalTime() {

return arrivalTime;
}

13 / 51

Class Passenger

/** Get the processing time.
@return The processing time */

public int getProcessingTime() {
return processingTime;

}

/** Get the passenger ID.
@return The passenger ID */

public int getId() {
return passengerId;

}

/** Set the maximum processing time
@param maxProcessingTime The new value */

public static void setMaxProcessingTime(int maxProcessTime) {
maxProcessingTime = maxProcessTime;

}
}

14 / 51

Class PassengerQueue

import java.util.*;

public class PassengerQueue {
// Data Fields
/** The queue of passengers. */
private Queue<Passenger> theQueue;

/** The number of passengers served. */
private int numServed;

/** The total time passengers were waiting. */
private int totalWait;

/** The name of this queue. */
private String queueName;

/** The average arrival rate. */
private double arrivalRate;

15 / 51

Class PassengerQueue

// Constructor
/** Construct a PassengerQueue with the given name.

@param queueName The name of this queue

*/
public PassengerQueue(String queueName) {

numServed = 0;
totalWait = 0;
this.queueName = queueName;
theQueue = new LinkedList<Passenger>();

}

/** Return the number of passengers served
@return The number of passengers served

*/
public int getNumServed() {
return numServed;

}

16 / 51

Class PassengerQueue

/** Return the total wait time
@return The total wait time

*/
public int getTotalWait() {
return totalWait;

}

/** Return the queue name
@return - The queue name

*/
public String getQueueName() {
return queueName;

}

17 / 51

Class PassengerQueue

/** Set the arrival rate
@param arrivalRate the value to set

*/
public void setArrivalRate(double arrivalRate) {
this.arrivalRate = arrivalRate;

}

/** Determine if the passenger queue is empty
@return true if the passenger queue is empty

*/
public boolean isEmpty() {
return theQueue.isEmpty();

}

/** Determine the size of the passenger queue
@return the size of the passenger queue

*/
public int size() {
return theQueue.size();

}

18 / 51

Class PassengerQueue

/** Check if a new arrival has occurred.
@param clock The current simulated time
@param showAll Flag to indicate that detailed

data should be output

*/
public void checkNewArrival(int clock, boolean showAll) {

if (Math.random() < arrivalRate) {
theQueue.add(new Passenger(clock));
if (showAll) {
System.out.println("Time is "

+ clock + ": "
+ queueName
+ "arrival, new queue size is"
+ theQueue.size());

}
}

}

19 / 51

Class PassengerQueue

/** Update statistics.
pre: The queue is not empty.
@param clock The current simulated time
@param showAll Flag to indicate whether to show detail
@return Time passenger is done being served

*/
public int update(int clock, boolean showAll) {
Passenger nextPassenger = theQueue.remove();
int timeStamp = nextPassenger.getArrivalTime();
int wait = clock - timeStamp;
totalWait += wait;
numServed++;
// continued

20 / 51

Class PassengerQueue

if (showAll) {
System.out.println("Time is " + clock

+ ": Serving "
+ queueName
+ " with time stamp "
+ timeStamp);

}
return clock + nextPassenger.getProcessingTime();

}

}

21 / 51

class AirlineCheckinSim

public class AirlineCheckinSim {

// Data Fields
/** Queue of frequent flyers. */
private PassengerQueue frequentFlyerQueue =

new PassengerQueue("Frequent Flyer");

/** Queue of regular passengers. */
private PassengerQueue regularPassengerQueue =

new PassengerQueue("Regular Passenger");

/** Maximum number of frequent flyers to be served
before a regular passenger gets served. */

private int frequentFlyerMax;

/** Maximum time to service a passenger. */
private int maxProcessingTime;

/** Total simulated time. */
private int totalTime;

22 / 51

class AirlineCheckinSim

/** If set true, print additional output. */
private boolean showAll;

/** Simulated clock. */
private int clock = 0;

/** Time that the agent will be done with the current passenger.*/
private int timeDone;

/** Number of frequent flyers served since the
last regular passenger was served. */

private int frequentFlyersSinceRP;

23 / 51

class AirlineCheckinSim

private void runSimulation() {
for (clock = 0; clock < totalTime; clock++) {
frequentFlyerQueue.checkNewArrival(clock, showAll);
regularPassengerQueue.checkNewArrival(clock, showAll);
if (clock >= timeDone) {
startServe();

}
}

}

24 / 51

class AirlineCheckinSim

private void startServe() {
if (!frequentFlyerQueue.isEmpty()

&& ((frequentFlyersSinceRP <= frequentFlyerMax)
|| regularPassengerQueue.isEmpty())) {

// Serve the next frequent flyer.
frequentFlyersSinceRP++;
timeDone = frequentFlyerQueue.update(clock, showAll);

}
else if (!regularPassengerQueue.isEmpty()) {
// Serve the next regular passenger.
frequentFlyersSinceRP = 0;
timeDone = regularPassengerQueue.update(clock, showAll);

}
else if (showAll) {
System.out.println("Time is " + clock + " server is idle");

}
}

25 / 51

class AirlineCheckinSim

/** Method to show the statistics. */
private void showStats() {

System.out.println
("\nThe number of regular passengers served was "
+ regularPassengerQueue.getNumServed());

double averageWaitingTime =
(double) regularPassengerQueue.getTotalWait()
/ (double) regularPassengerQueue.getNumServed();

System.out.println(" with an average waiting time of "
+ averageWaitingTime);

// continues

26 / 51

class AirlineCheckinSim

System.out.println("The number of frequent flyers served was "
+ frequentFlyerQueue.getNumServed());

averageWaitingTime =
(double) frequentFlyerQueue.getTotalWait()
/ (double) frequentFlyerQueue.getNumServed();

System.out.println(" with an average waiting time of "
+ averageWaitingTime);

System.out.println("Passengers in frequent flyer queue: "
+ frequentFlyerQueue.size());

System.out.println("Passengers in regular passenger queue: "
+ regularPassengerQueue.size());

}
}

27 / 51

Run a Simulation

You must supply:

I Expected number of frequent flyer arrivals per hour (arrival
rate is this value / 60)

I Expected number of regular passenger arrivals per hour
(arrival rate is this value / 60)

I The maximum number of frequent flyers served between
regular passengers (frequentFlyerMax)

I Maximum service time in minutes (maxProcessingTime)

I Total simulation time in minutes (totalTime)

28 / 51

Run a Simulation

I Expected number of frequent flyer arrivals per hour (arrival
rate is this value / 60): 240

I Expected number of regular passenger arrivals per hour
(arrival rate is this value / 60): 120

I The maximum number of frequent flyers served between
regular passengers (frequentFlyerMax): 3

I Maximum service time in minutes (maxProcessingTime): 4

I Total simulation time in minutes (totalTime): 60

The number of regular passengers served was 5
with an average waiting time of 30.8

The number of frequent flyers served was 20
with an average waiting time of 17.4
Passengers in frequent flyer queue: 40
Passengers in regular queue: 55

29 / 51

Queues

Applications

Implementation

30 / 51

Class LinkedList Implements the Queue Interface

I The LinkedList class provides methods for inserting and
removing elements at either end of a double-linked list, which
means all Queue methods can be implemented easily

I The Java 5.0 LinkedList class implements the Queue interface

Queue<String> names = new LinkedList<String>();

I creates a new Queue reference, names, that stores references
to String objects

31 / 51

Using a Single-Linked List to Implement a Queue

I Insertions are at the rear of a queue and removals are from
the front

I We need a reference to the last list node so that insertions
can be performed at O(1)

I The number of elements in the queue is changed by methods
insert and remove

32 / 51

Using a Single-Linked List to Implement a Queue

I A comment before beginning

I One might expect to start out with something like:

public class ListQueue<E> implements Queue<E> {
...

}

I However, since Queue is a subinterface of other interfaces
(namely, Collection<E> and Iterable<E>), many additional
operations would have to be implemented

33 / 51

Using a Single-Linked List to Implement a Queue

I It is best to start off with the abstract class AbstractQueue

since it implements all operations except for:
I public boolean offer(E item)
I public E poll()
I public E peek()
I public int size()
I public Iterator<E> iterator()

I Our implementation shall concentrate on these

public class ListQueue<E> extends AbstractQueue<E>
implements Queue<E> {

...
}

34 / 51

Using a Single-Linked List to Implement a Queue

import java.util.*;
public class ListQueue<E> extends AbstractQueue<E>

implements Queue<E> {

// Data Fields
/** Reference to front of queue. */
private Node<E> front;
/** Reference to rear of queue. */
private Node<E> rear;
/** Size of queue. */
private int size;

35 / 51

Using a Single-Linked List to Implement a Queue
/** Node is building block for single-linked list. */
private static class Node<E> {

private E data;
private Node next;

/** Creates a new node with a null next field.
@param dataItem The data stored

*/
private Node(E dataItem) {
data = dataItem;
next = null;

}
/** Creates a new node that references another node.

@param dataItem The data stored
@param nodeRef The node referenced by new node

*/
private Node(E dataItem, Node<E> nodeRef) {
data = dataItem;
next = nodeRef;

}
} //end class Node

36 / 51

Using a Single-Linked List to Implement a Queue

/** Insert an item at the rear of the queue.
post: item is added to the rear of the queue.
@param item The element to add
@return true (always successful) */

public boolean offer(E item) {
// Check for empty queue.
if (front == null) {
rear = new Node<E> (item);
front = rear;

}
else {

37 / 51

Using a Single-Linked List to Implement a Queue

else {
// Allocate a new node at end, store item in
// it, and
// link it to old end of queue.
rear.next = new Node<E>(item);
rear = rear.next;

}
size++;
return true;

}

38 / 51

Using a Single-Linked List to Implement a Queue

/** Return the item at the front of the queue without removing it.
@return The item at the front of the queue if successful; return null if the queue is empty

*/
public E peek() {

if (size == 0)
return null;

else
return front.data;

}
}

39 / 51

Using a Single-Linked List to Implement a Queue

/** Remove the entry at the front of the queue and
return it if the queue is not empty.
post: front references item that was 2nd in queue.
@return Item removed if successful, null othw */

public E poll() {
E item = peek(); // Retrieve item at front.
if (item == null)
return null;

if (size==1) { // Queue has one item
front = null;
rear = null;

} else { // Queue has two or more items
front = front.next;

}
size--;
return item; // Return data at front of queue.

}

40 / 51

Implementing a Queue Using a Circular Array

I The time efficiency of using a single- or double-linked list to
implement a queue is acceptable

I However, there are some space inefficiencies

I Storage space is increased when using a linked list due to
references stored in the nodes

I Array Implementation
I Insertion at rear of array is constant time O(1)
I Removal from the front is linear time O(n) if we shift all

elements
I Removal from rear of array is constant time O(1)
I Insertion at the front is linear time O(n) if we shift all elements

I We can avoid these inefficiencies in a circular array

41 / 51

Implementing a Queue Using a Circular Array (cont.)

Now we add A

42 / 51

Implementing a Queue Using a Circular Array (cont.)

Now we add A

42 / 51

Implementing a Queue Using a Circular Array (cont.)
We add A

43 / 51

Implementing a Queue Using a Circular Array (cont.)
ArrayQueue q = new ArrayQueue(5);

public ArrayQueue(int initCapacity) {
capacity = initCapacity;
theData = (E[])new Object[capacity];
front = 0;
rear = capacity - 1;
size = 0;

}

44 / 51

Implementing a Queue Using a Circular Array (cont.)

public boolean offer(E item) {
if (size == capacity) {

reallocate();
}
size++;
rear = (rear + 1) % capacity;
theData[rear] = item;
return true;

}

Let’s see an example
45 / 51

Implementing a Queue Using a Circular Array (cont.)
q.offer(’*’);q.offer(’+’);q.offer(’/’);q.offer(’-’);q.offer(’A’);

public boolean offer(E item) {
if (size == capacity) {

reallocate();
}
size++;
rear = (rear + 1) % capacity;
theData[rear] = item;
return true;

}

46 / 51

Implementing a Queue Using a Circular Array (cont.)
next = q.poll();next = q.poll();

public E poll() {
if (size == 0) {

return null
}
E result = theData[front];
front = (front + 1) % capacity;
size--;
return result;

}

47 / 51

Implementing a Queue Using a Circular Array (cont.)
q.offer(’B’);q.offer(’C’)

public boolean offer(E item) {
if (size == capacity) {

reallocate();
}
size++;
rear = (rear + 1) % capacity;
theData[rear] = item;
return true;

}

48 / 51

Implementing a Queue Using a Circular Array (cont.)

private void reallocate() {
int newCapacity = 2 * capacity;
E[] newData = (E[])new Object[newCapacity];
int j = front;
for (int i = 0; i < size; i++) {

newData[i] = theData[j];
j = (j + 1) % capacity;

}
front = 0;
rear = size - 1;
capacity = newCapacity;
theData = newData;

}

49 / 51

Comparing the Three Implementations
Computation time

I All three implementations (double-linked list, single-linked list,
circular array) are comparable in terms of computation time

I All operations are O(1) regardless of implementation

I Although reallocating an array is O(n), it is amortized over n
items, so the cost per item is O(1)

50 / 51

Comparing the Three Implementations
Storage

I Linked-list implementations require more storage due to the
extra space required for the links

I Each node for a single-linked list stores two references (one for
the data, one for the link)

I Each node for a double-linked list stores three references (one
for the data, two for the links)

I A double-linked list requires 1.5 times the storage of a
single-linked list

I A circular array that is filled to capacity requires half the
storage of a single-linked list to store the same number of
elements, but a recently reallocated circular array is half
empty, and requires the same storage as a single-linked list

I All three implementations (double-linked list, single-linked list,
circular array) are comparable in terms of computation time

51 / 51

	Queues
	Applications
	Implementation

