
Data Structures
Lists II

CS284

1 / 12

Structure of this week’s classes

Implementing Lists as Double-Linked Lists

2 / 12

List

I Last class we introduced lists

I We studied an array based implementation

I We also studied a linked-list based implementation (Single
Linked Lists)

I Next we present a double-linked list implementation (Double
Linked Lists)

I Also, we present Iterators

3 / 12

Implementing Lists as Double-Linked Lists

4 / 12

Node Class
private static class Node<E> {
private E data;
private Node<E> next = null;
private Node<E> prev = null;
private Node(E dataItem) {

data = dataItem;
}
private Node(E dataItem, Node<E> p, Node<E> n) {

data = dataItem;
prev = p;
next = n;

}
}

5 / 12

Inserting into a Double-Linked List

Node<String> sam = new Node<String>("Sam");
Node<String> harry = new Node<String>("Harry");
harry.next = sam;
sam.prev = harry;

I Let’s draw a diagram

6 / 12

Inserting into a Double-Linked List
Node<String> sharon = new Node<String>("Sharon");
sharon.next = sam;
sharon.prev = sam.prev;
sam.prev.next = sharon;
sam.prev = sharon

7 / 12

How do we remove a node?

Consider the execution of the following additional lines

harry.prev.next = harry.next
harry.next.prev = harry.prev

8 / 12

The class DLList<E>

public class DLList<E> {

private class Node<E> {
/* As defined above */
...

}
/** The first element in the list */
private Node<E> head;
/** The last element in the list */
private Node<E> tail;
/** The size of the list */
private int size = 0;

// Operations should follow
}

9 / 12

Implement public void add(E item)

I This operation should add the item in a new node at the
beginning of the list

10 / 12

Double-Linked List

I So far we have worked only with internal nodes

I As with the single-linked class, it is best to access the internal
nodes with a double-linked list object

I A double-linked list object has data fields:
I head (a reference to the first list Node)
I tail (a reference to the last list Node)
I size

I Insertion at either end is O(1); insertion elsewhere is still O(n)

I For the second assignment you will be asked to implement an
indexed double-linked list.

11 / 12

Circular lists

I Circular double-linked list:
I Link last node to the first node, and
I Link first node to the last node

I We can also build singly-linked circular lists:
I Traverse in forward direction only

I Advantages:
I Continue to traverse even after passing the first or last node
I Visit all elements from any starting point
I Never fall off the end of a list

I Disadvantage: Code must avoid an infinite loop!

12 / 12

	Implementing Lists as Double-Linked Lists

