
Algorithm Efficiency

CS284

1 / 23



Algorithm Efficiency and Big-O

I Getting a precise measure of the performance of an algorithm
is difficult

I Big-O notation expresses the performance of an algorithm as
a function of the number of items to be processed

I This permits algorithms to be compared for efficiency

I It does so independently of the underlying compiler

I We’re going to provide an informal introduction, more in CS
385 Algorithms

2 / 23



Linear Growth Rate

Processing time increases in proportion to the number of inputs n

public static int f(int[] x, int target) {
for (int i=0; i<x.length; i += 1) {

if (x[i]==target) { return i; }
}
return -1; // target not found

}

I Let n be x.length

I Target not present ⇒ for loop will execute n times

I Target present ⇒ for loop will execute (on average) (n + 1)/2
times

I Therefore, the total execution time is directly proportional to n

I This is described as a growth rate of order n or O(n)

3 / 23



Linear Growth Rate

Processing time increases in proportion to the number of inputs n

public static int f(int[] x, int target) {
for (int i=0; i<x.length; i += 1) {

if (x[i]==target) { return i; }
}
return -1; // target not found

}

I Let n be x.length

I Target not present ⇒ for loop will execute n times

I Target present ⇒ for loop will execute (on average) (n + 1)/2
times

I Therefore, the total execution time is directly proportional to n

I This is described as a growth rate of order n or O(n)

3 / 23



n ∗m Growth Rate

Processing time can be dependent on two different inputs n and m

public static boolean g(int[] x, int[] y) {
for (int i=0; i<x.length; i += 1) {

if (f(y, x[i]) != -1) { return false; }
}
return true;

}

I The for loop will execute x.length times

I But it will call search, which will execute y.length times

I The total execution time is proportional to
(x.length * y.length)

I The growth rate has an order of n ∗m or O(n ∗m)

4 / 23



n ∗m Growth Rate

Processing time can be dependent on two different inputs n and m

public static boolean g(int[] x, int[] y) {
for (int i=0; i<x.length; i += 1) {

if (f(y, x[i]) != -1) { return false; }
}
return true;

}

I The for loop will execute x.length times

I But it will call search, which will execute y.length times

I The total execution time is proportional to
(x.length * y.length)

I The growth rate has an order of n ∗m or O(n ∗m)

4 / 23



Quadratic Growth Rate

Processing time proportional to square of number of inputs n

public static boolean h(int[] x) {
for (int i=0; i<x.length; i += 1) {

for (int j=0; j<x.length; j += 1) {
if (i != j && x[i] == x[j]) { return false; }

}
}
return true;

}

I The for loop with i as index will execute x.length times

I The for loop with j as index will execute x.length times

I The total number of times the inner loop will execute is
(x.length) 2

I The growth rate has an order of n2 or O(n2)

5 / 23



Quadratic Growth Rate

Processing time proportional to square of number of inputs n

public static boolean h(int[] x) {
for (int i=0; i<x.length; i += 1) {

for (int j=0; j<x.length; j += 1) {
if (i != j && x[i] == x[j]) { return false; }

}
}
return true;

}

I The for loop with i as index will execute x.length times

I The for loop with j as index will execute x.length times

I The total number of times the inner loop will execute is
(x.length) 2

I The growth rate has an order of n2 or O(n2)

5 / 23



Logarithmic Growth Rate

You must also examine the number of times a loop is executed

for (int i=1; i < x.length; i *= 2) {
System.out.println(x[i]);

}

I The loop body will execute k times, with i having the
following values:

1, 2, 4, 8, 16, ..., 2k

until 2k is greater or equal to x.length

I Lets deduce the value of k

2k−1 < x .length ≤ 2k

⇒ k − 1 < log2(x .length) ≤ k (since log2 2k is k)
⇒ k = dlog2(x .length)e

6 / 23



Logarithmic Growth Rate

You must also examine the number of times a loop is executed

for (int i=1; i < x.length; i *= 2) {
System.out.println(x[i]);

}

I k = dlog2(x .length)e
I Thus we say the loop is O(log2 n)

I Logarithmic functions grow slowly as the number of data
items n increases

7 / 23



Different Growth Rates

8 / 23



Growth Rate

Defining Big-O

9 / 23



Big-O Notation

I The O() in the previous examples can be thought of as an
abbreviation of “order of magnitude”

I f (n) ∈ O(g(n))

I We can thus say that g(n) is an upper bound on the growth
rate

I We are next going to define O() more precisely

10 / 23



Formal Definition of Big-O

I Consider the two snippets of code below

I In order to compare their growth rates, why not just count the
number of time units for each?

for (int i = 0; i < n; i += 1){
for (int j = 0; j < 7; j += 1){
System.out.println("Hello");

}
}
for (int j = 0; j < 50; j += 1){
System.out.println("Hello");

}

T1(n) = 7n + 50

for (int i = 0; i < n; i += 1){
for (int j = 0; j < 100; j += 1){

System.out.println("Hello");
}

}

T2(n) = 100n

I For large values of n independent terms (such as 50) and
constant coefficients (such as 7 and 100) are negligible

I Both are considered to have linear growth

11 / 23



Formal Definition of Big-O

O(g(n)) = {f (n) | there exist two positive constants, n0 and c
such that, 0 ≤ f (n) ≤ c ∗ g(n) for all n ≥ n0}

I O(g(n)) is a set of functions

I It is the set of functions f (n) s.t., as n gets sufficiently large
(larger than n0), there is some constant c for which the
processing time will always be less than or equal to c ∗ g(n)

12 / 23



Big-O Example 1

n2 + 5n + 25 ∈ O(n2)

I Find constants n0 and c so that, for all n > n0,
cn2 ≥ n2 + 5n + 25

cn2 ≥ n2 + 5n + 25

c ≥ n2

n2
+ 5n

n2
+ 25

n2

c ≥ 1 + 5
n + 25

n2

I When n = n0 = 5, the RHS is (1 + 5
5 + 25

25), c is 3

I Moreover, limn→∞ 1 + 5
n + 25

n2
= 1

I So, 3n2 ≥ n2 + 5n + 25, for all n ≥ 5

I Other values of n0 and c also work

13 / 23



Big-O Example 1

14 / 23



Big-O Example 2

I Consider the following loop

for (int i = 0; i < n; i += 1) {
for (int j = i + 1; j < n; j += 1) {

3 simple statements
}

}

T (n) = 3(n − 1) + 3(n − 2) + ... + 3

I Question:

T (n) ∈ O(n2)?

15 / 23



Big-O Example 2

T (n) = 3(n − 1) + 3(n − 2) + ... + 3

I Factoring out the 3,

3(n − 1 + n − 2 + ... + 1)

I 1 + 2 + ... + n − 1 = (n∗(n−1))
2

I Therefore T (n) = 1.5n2 − 1.5n

cn2 ≥ 1.5n2 − 1.5n
c ≥ 1.5− 1.5

n
c ≥ 1.5− 1.5

n0
, n0 ≥ 1

I Therefore T (n) ∈ O(n2) when n0 is 1 and c is 1.5

16 / 23



Big-O Example 2

17 / 23



Exercises

I Show that T (n) = n3 − 5n2 + 20n − 20 ∈ O(n3).

I Show that T (n) = 7n4 + 5n2 − 50n ∈ O(n4).

18 / 23



Symbols Used in Quantifying Performance

19 / 23



Common Growth Rates

Big-O Name
O(1) Constant
O(log n) Logarithmic
O(n) Linear
O(n log n) Log-linear
O(n2) Quadratic
O(n3) Cubic
O(2n) Exponential
O(n!) Factortial

20 / 23



Effects of Different Growth Rates

21 / 23



Algorithms with Exponential and Factorial Growth Rates

I Algorithms with exponential and factorial growth rates have
an effective practical limit on the size of the problem they can
be used to solve

I With an O(2n) algorithm, if 100 inputs takes an hour then,

I 101 inputs will take 2 hours
I 105 inputs will take 32 hours
I 114 inputs will take 16,384 hours (almost 2 years!)

22 / 23



Algorithms with Exponential and Factorial Growth Rates
(cont.)

I Encryption algorithms take advantage of this characteristic

I Some cryptographic algorithms can be broken in O(2n) time,
where n is the number of bits in the key

I A key length of 40 is considered breakable by a modern
computer, but a key length of 100 bits will take a
billion-billion (1018) times longer than a key length of 40

23 / 23


	Growth Rate
	Defining Big-O

