
Data Structures
Software Lifecycle

CS284

1 / 28

Software Lifecycles

I A software development life cycle (SDLC), is a structure
imposed on the development of a software product

I Describes the phases and tasks that take place during the
software development process

I Several models exist
I “Waterfall” is the simplest

I It is not used nowadays
I Some of its ideas have been integrated to more modern models

2 / 28

General Lifecycle Model

I The phases are the same in most models:

1. Requirements specification
2. Design
3. Implementation
4. Testing
5. Deployment and maintenance

3 / 28

Requirements

I A complete description of the behavior of a system to be
developed

I It includes a set of use cases that describe all the interactions
the users will have with the software

I However,
I Customers typically have an abstract idea of what they want,

but not what software should do
I Incomplete, ambiguous, or even contradictory requirements are

often encountered

4 / 28

Design

I A high-level solution to the problem

I Includes tasks such as

I Division of the problem into modules
I Data structure, algorithm and programming language selection

I Includes tools such as:
I Flowcharts
I Storyboards (if UI is important part of the software)

I Considerations:

I Compatibility, Extensibility, Maintainability, Modularity,
Reliability, Robustness, Security, Usability

5 / 28

Implementation

I Obvious
I Includes integration

I Vertical: integration of subsystems to create functional entities
(end-to-end systems)

I Star: each subsystem is connected to all existing subsystems
I Horizontal: specialized subsystem dedicated to communication

between subsystems

6 / 28

Testing

I Runs a program or part of a program under controlled
conditions to verify that results are as expected

I Detects program defects after the program compiles (all
syntax errors have been removed)

I While extremely useful, testing cannot detect the absence of
all defects in complex programs

7 / 28

Testing Levels

I Unit testing: tests the smallest testable piece of the software,
often a class or a sufficiently complex method

I We’ll focus on this level

I Integration testing: tests integration among units

I System testing: tests the whole program in the context in
which it will be used

I Acceptance testing: system testing designed to show that a
program meets its functional requirements

8 / 28

Types of Testing

I Black-box (or closed-box or functional) testing:

I Tests the item (method, class, or program) based on its
interfaces and functional requirements

I Is accomplished by varying input parameters across the allowed
range and outside the allowed range, and comparing with
independently calculated results

I White-box (glass-box, open-box, or coverage) testing:

I tests the item (method, class, or program) with knowledge of
its internal structure

I exercises as many paths through the element as possible
I provides appropriate coverage

I statement – ensures each statement is executed at least once
I branch – ensures each choice of branch (if, loops, etc.) is

taken
I path – tests each path through a method

9 / 28

Preparations for Testing

I A test plan should be developed early in the design stage –
the earlier an error is detected, the easier and less expensive it
is to correct it

I Aspects of test plans include deciding:

I how the software will be tested
I when the tests will occur
I who will do the testing
I what test data will be used

10 / 28

Final Phases

I Installation

I Maintenance

11 / 28

The Waterfall Model

I Sequential design process

I After each phase is finished, next one
begins

I Advantage: bugs found early cost less
(money, effort, time)

I Disadvantage: inflexibility

I Impossible to finish each phase
perfectly without ever having to go
back

I Nowadays other models are used (that
build on some ideas of this one)

I More in CS 347 Software
Development Process

12 / 28

Software Lifecycles

Basic Testing Tips
Documenting Your Code
Preconditions and Postconditions
Developing Test Data

13 / 28

Documentation

I Carefully document method operation, parameter, and class
attributes using comments

I Use /**... */ and follow Javadoc conventions

I For example:

/**
* Person is a class that represents a human being.

* @author Koffman and Wolfgang

* @version 1.2

*/
public class Person { ... }

14 / 28

Javadoc Tags

I Keywords recognized by Javadoc which define the type of
information that follows.

I Come after the description (separated by a new line).
I Some common pre-defined tags:

I @author [author name] identifies author(s) of a class or
interface.

I @version [version] version info of a class or interface.
I @param [arg. name] [arg. descrip.] describes

an argument of method or constructor.
I @return [descrip. of return] describes data

returned by method (unnecessary for constructors and void
methods).

I @exception [exception thrown] [exception
descrip.] describes exception thrown by method.

I @throws [exception thrown] [exception
descrip.] same as @exception.

15 / 28

Javadoc Tags

public class Person {

/** The age at which a person can vote */
private static final int VOTE_AGE = 18;

/**
* Determines whether a person can vote.

* @param year The current year

* @return true if the person’s age is greater than or equal to

* the voting age

*/
public boolean canVote(int year) { ...}

}

16 / 28

Preconditions and Postconditions

I A precondition is a statement of any assumptions or
constraints on the input parameters or the state of the
recipient object before a method begins execution

I It is a requirement that must be met by the caller of the
method

I It is the responsibility of the caller never to call the method if
the requirement is violated

I Eg. In a deposit method of a BankAccount calls, the amount
to be deposited should be non-negative

17 / 28

Preconditions and Postconditions

/**
Deposits money into this account
@param amount the amount of money to deposit
(Precondition: amount>=0)

*/
public void deposit(int amount) {
...

}

I The method is free to do anything if the precondition is not
fulfilled

18 / 28

Preconditions and Postconditions

/**
Deposits money into this account
@param amount the amount of money to deposit
(Precondition: amount>0)

*/
public void deposit(int amount) {
...

}

I Should the code check that the precondition is met?

I If so, what should be done if the condition is not met?

I What do you think of this?

public void deposit() {
if (amount < 0) return;
...

}

19 / 28

Preconditions and Postconditions

/**
Deposits money into this account
@param amount the amount of money to deposit
(Precondition: amount>0)

*/
public void deposit(int amount) {
...

}

I Should the code check that the precondition is met?

I May be inefficient if may checks have to be made

I Or should it assume that the precondition is met?

I May be dangerous

I Convenient compromise: assertion checking

20 / 28

Preconditions and Postconditions

%[
% linebackgroundcolor={%
% \btLstHL<1>{7}%
% }]

/**
Deposits money into this account
@param amount the amount of money to deposit
(Precondition: amount>0)

*/
public void deposit(int amount) {

assert amount>0;
balance = balance + amount:

}

I Assertion: condition believed true at a particular location in
the program

I Failure of assertions will be notified to the programmer (if
assertion checking is enabled)

I Assertions can be enabled or disabled

21 / 28

Preconditions and Postconditions

I A postcondition describes the result of executing the method,
including any change to the object’s state

I A method’s preconditions and postconditions serve as a
contract between a method caller and the method programmer

/**
Deposits money into this account
@param amount the amount of money to deposit
(Precondition: amount>0)
(Postcondition: adds amount to balance)

*/
public void deposit(int amount) {
...

}

22 / 28

JUnit

I JUnit is a unit testing framework for Java (see Appendix C)

I A unit generically refers to a function, method, module,
package, etc.

I To install download .jar file from http://junit.org and
then import it into your project

23 / 28

http://junit.org

Example

package BinaryArithmetic;
import static org.junit.Assert.*;
import org.junit.Test;

public class BinaryNumberTest {
@Test
public void testAdd() {

BinaryNumber b1 = new BinaryNumber("1010");
BinaryNumber b2 = new BinaryNumber("1100");
// assert statements
assertEquals("1010 + 1100 must be 0001", "0001", b1.add(b2).toString());

}
}

24 / 28

Another Example: Testing Array Search

public class Search {
private int[] x;

Search() {
x = new int[]{5, 12, 15, 4, 8, 12, 7};

}

Search(int[] y) {
x=y;

}

public int search(int target) {
for (int i = 0; i < x.length; i++) {

if (x[i] == target)
return i;

}
return -1;

}
}

25 / 28

Testing Array Search

package Search;
import static org.junit.Assert.*;
import org.junit.Test;

public class SearchTest {

@Test
public void testForNonExtantElement() {

Search s = new Search();
// assert statements
assertEquals(-1, s.search(2));

}

@Test
public void testForTargetAsFirstElement() {

Search s = new Search();
// assert statements
assertEquals(0, s.search(5));

}

26 / 28

Testing Array Search

@Test
public void testForTargetAsLastElement() {

Search s = new Search();
// assert statements
assertEquals(6, s.search(7));

}

@Test
public void testForTargetForMultipleOccurrenceOfTarget() {

Search s = new Search();
// assert statements
assertEquals(1, s.search(12));

}

27 / 28

Testing Array Search

@Test
public void testForTargetSomewhereInTheMiddle() {

Search s = new Search();
// assert statements
assertEquals(3, s.search(4));

}

@Test
public void testFor1ElementArray() {

int[] y = {10};
Search s = new Search(y);
// assert statements
assertEquals(0, s.search(10));

}

28 / 28

	Software Lifecycles
	Basic Testing Tips
	Documenting Your Code
	Preconditions and Postconditions
	Developing Test Data

