
Data Structures
OOP and Class Hierarchies

CS284

1 / 65

Objectives

I How Java determines which method to execute when there
are multiple methods

I Abstract classes

I Abstract data types and interfaces

I Object class and overriding Object class methods

I Exception hierarchy – out of scope

I Packages and visibility

I Class hierarchy for shapes

2 / 65

Method Overriding and Overloading

Polymorphism

Abstract Classes

Class Object and Casting

Exceptions

Packages and Visibility

3 / 65

Method Overloading

I Methods in the class hierarchy which have the same name,
return type, and parameters override corresponding inherited
methods

I The method in a class which is overriden by one in the
subclass is no longer available

I Hence why we speak of “overriding”

4 / 65

Method Overriding

I Recall from last class
Computer

String manufacturer
String processor
int ramSize
int diskSize
double processorSpeed

int getRamSize()
int getDiskSize()
double getProcessorSpeed()
Double computePower()
String toString()

Notebook

double screenSize
double weight

5 / 65

Method Overriding

Suppose we run:

1 Computer myComputer = new Computer("Acme", "Intel", 2,
160, 2.4);

2

3 Notebook yourComputer = new Notebook("DellGate", "AMD",
4, 240, 1.8, 15.0, 7.5);

4

5 System.out.println("My computer is:\n" + myComputer.
toString());

6

7 System.out.println("Your computer is:\n" + yourComputer.
toString());

6 / 65

Method Overriding
The output would be

1 My Computer is:
2 Manufacturer: Acme
3 CPU: Intel
4 RAM: 2.0 gigabytes
5 Disk: 160 gigabytes
6 Speed: 2.4 gigahertz
7

8 Your Computer is:
9 Manufacturer: DellGate

10 CPU: AMD
11 RAM: 4.0 gigabytes
12 Disk: 240 gigabytes
13 Speed: 1.8 gigahertz

The screensize and weight
variables are not printed
because Notebook has not
defined a toString() method

Computer

String manufacturer
String processor
int ramSize
int diskSize
double processorSpeed

int getRamSize()
int getDiskSize()
double getProcessorSpeed()
Double computePower()
String toString()

Notebook

double screenSize
double weight

7 / 65

Method Overriding

I In Notebook:

1 public String toString() {
2 String result = super.toString() +
3 "\nScreen size: " +
4 screenSize + " inches" +
5 "\nWeight: " + weight +
6 " pounds";
7 return result;
8 }

I Overrides Computer’s inherited toString() method and will
be called for all Notebook objects

I super.methodName() calls the method with that name in
the superclass of the current class

8 / 65

Method Overriding

Suppose we now run again the snippet of code:

1 Computer myComputer = new Computer("Acme", "Intel", 2,
160, 2.4);

2

3 Notebook yourComputer = new Notebook("DellGate", "AMD",
4, 240, 1.8, 15.0, 7.5);

4

5 System.out.println("My computer is:\n" + myComputer.
toString());

6

7 System.out.println("Your computer is:\n" + yourComputer.
toString());

9 / 65

Method Overriding

This time the output would be

1 My Computer is:
2 Manufacturer: Acme
3 CPU: Intel
4 RAM: 2.0 gigabytes
5 Disk: 160 gigabytes
6 Speed: 2.4 gigahertz
7

8 Your Computer is:
9 Manufacturer: DellGate

10 CPU: AMD
11 RAM: 4.0 gigabytes
12 Disk: 240 gigabytes
13 Speed: 1.8 gigahertz
14 Screen size: 15.0
15 Weight: 7.5

Computer

String manufacturer
String processor
int ramSize
int diskSize
double processorSpeed

int getRamSize()
int getDiskSize()
double getProcessorSpeed()
Double computePower()
String toString()

Notebook

double screenSize
double weight

10 / 65

Method Overloading

I We now consider method overloading

I Methods with the same name but different parameters are
overloaded

I All the overloaded methods are available at the same time

11 / 65

An Example: Overloading Constructors in Notebook

1 public Notebook(String man, String processor,
double ram, int disk, double procSpeed, double
screen, double wei)

2 { ... }

If we want to have a default manufacturer for a Notebook, we can
create a constructor with six parameters instead of seven

1 public Notebook(String processor, double ram, int
disk, double procSpeed, double screen, double
wei)

2 {
3 this(DEFAULT_NB_MAN, double ram, int disk, double

procSpeed, double screen, double wei)
4 }

12 / 65

Method Overloading – Pitfall

I When overriding a method, the method must have the same
name and the same number and types of parameters in the
same order

I If not, the method will overload

I This error is common; the annotation @Override preceding an
overridden method will signal the compiler to issue an error if
it does not find a corresponding method to override

1 @Override
2 public String toString() { ... }

I It is good programming practice to use this annotation

13 / 65

A Word on Implicit Casts and Overloading

1 A x;
2 x=new B();
3 System.out.print(x.m(5));
4

5 public class A {
6 public int m(float x) {
7 return 10; }
8 }
9 public class B extends A {

10 public int m(float x) {
11 return 20; }
12 }

Output: 20

14 / 65

A Word on Implicit Casts and Overloading

1 A x;
2 x=new B();
3 System.out.print(x.m(5));
4

5 public class A {
6 public int m(int x) {
7 return 10; }
8 }
9 public class B extends A {

10 public int m(float x) {
11 return 20; }
12 }

Output: 10

15 / 65

Method Overriding and Overloading

Polymorphism

Abstract Classes

Class Object and Casting

Exceptions

Packages and Visibility

16 / 65

Polymorphism

I Means having many shapes and is central feature of OOP

I It enables the JVM to determine at run time which of the
classes in a hierarchy is referenced by a superclass variable or
parameter

Example

I If you write a program to reference computers, you may want
a variable to reference a Computer or a Notebook

I If you declare the reference variable as

Computer theComputer;

it can reference either a Computer or a Notebook—because a
Notebook is-a Computer

17 / 65

Polymorphism

I Suppose the following statements are executed:

1 Computer theComputer = new Notebook("Bravo", "
Intel", 4, 240, 2.4, 15, 7.5);

2 System.out.println(theComputer.toString());

I The variable theComputer is of type Computer,

I Which toString() method will be called, Computer’s or
Notebook’s?

18 / 65

Polymorphism

I The JVM correctly
identifies the run time
type of theComputer as
Notebook and calls the
toString() method
associated with Notebook

I This is an example of
polymorphism

Computer

String manufacturer
String processor
int ramSize
int diskSize
double processorSpeed

int getRamSize()
int getDiskSize()
double getProcessorSpeed()
Double computePower()
String toString()

Notebook

String DEFAULT NB MAN
double screenSize
double weight

String toString()

19 / 65

Polymorphism

1 Computer[] labComputers = new Computer[10];

I labComputers[i] can reference either a Computer or a
Notebook because Notebook is a subclass of Computer

I labComputers[i].toString() polymorphism ensures that
the correct toString method will be executed

20 / 65

Another Example

I If we want to compare the power of two computers (either
Computers or Notebooks) we do not need to overload
methods with parameters for two Computers, or two
Notebooks, or a Computer and a Notebook

I We simply write one method with two parameters of type
Computer and allow the JVM, using polymorphism, to call the
correct method

21 / 65

Example

I The following code is placed in the class Computer

1 /** Compares power of this comp. and its argument comp.
2 @param aComputer The computer being compared to this

computer
3 @return -1 if this computer has less power,
4 0 if the same, and
5 +1 if this computer has more power.
6 */
7 public int comparePower(Computer aComputer) {
8 if (this.computePower() < aComputer.computePower())
9 return -1;

10 else if (this.computePower() == aComputer.computePower
())

11 return 0;
12 else return 1;
13 }

22 / 65

Example

I The following code is valid; note that the argument to
comparePower is of type Notebook

I It prints 1

1 Computer c1 = new Computer("pc",7,8);
2 Notebook c2 = new Notebook("laptop",2,3);
3

4 System.out.println(c1.comparePower(c2));

23 / 65

Method Overriding and Overloading

Polymorphism

Abstract Classes

Class Object and Casting

Exceptions

Packages and Visibility

24 / 65

Abstract Classes

I Denoted by using the word abstract in its heading

visibility abstract class className ...

I Differs from an actual class (sometimes called a concrete
class) in two respects:

I An abstract class cannot be instantiated
I An abstract class may declare abstract methods

I Just as in an interface, an abstract method is declared
through a method heading:

visibility abstract resultType methodName (

parameterList);

I A concrete class that is a subclass of an abstract class must
provide an implementation for each abstract method

25 / 65

Abstract Classes

I Use an abstract class in a class hierarchy when you need a
base class for two or more subclasses that share some
attributes

I You can declare some or all of the attributes and define some
or all of the methods that are common to these subclasses

I You can also require that the actual subclasses implement
certain methods by declaring these methods abstract

26 / 65

Examples of an Abstract Class

1 public abstract class Food {
2 public final String name;
3 public double calories;
4 // Actual methods
5 public double getCalories () {
6 return calories;
7 }
8 public Food (String name, double calories) {
9 this.name = name;

10 this.calories = calories;
11 }
12 // Abstract methods
13 public abstract double percentProtein();
14 public abstract double percentFat();
15 public abstract double percentCarbs();
16 }

27 / 65

Another Example

I A wrapper class is used to store a primitive-type value in an
object type

I The Number class is an example of an abstract class too

I It relates the following wrapper classes

28 / 65

Abstract Classes and Interfaces

I A Java interface can

I Declare methods, but cannot implement them
I These methods are called abstract methods.
I All fields are automatically public, static, and final

I An abstract class can have:
I abstract methods (no body)
I concrete methods (with a body)
I data fields

I Abstract classes and Interfaces cannot be instantiated

I Interfaces: allow multiple inheritance, (abstract) classes to not

I Abstract classes: allow code to be shared, interfaces do not

29 / 65

Abstract Classes and Interfaces

I An abstract class can have constructors!
I Purpose: initialize data fields when a subclass object is created
I The subclass uses super(...) to call the constructor

I An abstract class may implement an interface, but need not
define all methods of the interface

I Implementation is left to subclasses

30 / 65

Inheriting from Interfaces vs. Classes

I A class can extend 0 or 1 superclass

I An interface cannot extend a class

I A class can implement 0 or more interfaces

31 / 65

Method Overriding and Overloading

Polymorphism

Abstract Classes

Class Object and Casting

Exceptions

Packages and Visibility

32 / 65

Class Object

I Object is the root of the class hierarchy

I Every class has Object as a superclass

I All classes inherit the methods of Object but may override
them

boolean equals(Object obj) Compares this object to its argu-
ment

int hashCode() Returns an integer hash code value
for this object

String toString() Returns a string that textually rep-
resents the object

Class<?> getClass() Returns a unique object that iden-
tifies the class of the object

33 / 65

Method toString

I You should always override toString method if you want to
print the object’s state

I If you do not override it:

I Object.toString will return a String
I Just not the String you want!

I Example: ArrayBasedPD@ef08879

I The name of the class, @, instance’s hash code

34 / 65

Operations Determined by Type of Reference Variable

I As shown previously with Computer and Notebook, a variable
can refer to object whose type is a subclass of the variable’s
declared type

1 Object aThing = new Integer(25);

I The compiler always verifies that a variable’s type includes the
class of every expression assigned to the variable (e.g., class
Object must include class Integer)

35 / 65

Operations Determined by Type of Reference Variable
(cont.)

1 Object aThing = new Integer(25);

I The type of the variable determines what operations are legal

I The following is legal: aThing.toString();

I But this is not legal: aThing.intValue();

I Object has a toString() method, but it does not have an
intValue() method (even though Integer does, the
reference is considered of type Object)

36 / 65

Method Object.equals

I Object.equals method has a parameter of type Object

1 public boolean equals (Object other) {...}

I Compares two objects to determine if they are equal

I A class must override equals in order to support comparison

37 / 65

Employee.equals()

1 /** Determines whether the current object matches its
argument.

2 @param obj The object to be compared to the current
object

3 @return true if the objects have the same name and
address;

4 otherwise, return false
5 */
6 @Override
7 public boolean equals(Object obj) {
8 if (obj == this) return true;
9 if (obj == null) return false;

10 if (this.getClass() == obj.getClass()) {
11 Employee other = (Employee) obj;
12 return name.equals(other.name) &&
13 address.equals(other.address);
14 } else {
15 return false;
16 }
17 }

38 / 65

Class Class

I Every class has a Class object that is created automatically
when the class is loaded into an application

I Each Class object is unique for the class

I Method getClass() is a member of Object that returns a
reference to this unique object

I In the previous example, if

this.getClass() == obj.getClass()

is true, then we know that obj and this are both of class
Employee

39 / 65

Operations Determined by Type of Reference Variable
(cont.)

I The following method will compile,

1 aThing.equals(new Integer("25"));

I Object has an equals method, and so does Integer

I Which one is called? Why?

I Why does the following generate a syntax error?
Integer aNum = aThing;

I Incompatible types!

40 / 65

Casting in a Class Hierarchy

I Casting obtains a reference of a different, but matching, type

I Casting does not change the object! It creates an anonymous
reference to the object

Integer aNum = (Integer) aThing;

I Does this work?

((Integer) aThing).intValue()

41 / 65

Casting in a Class Hierarchy (cont.)

I Downcast:

I Cast superclass type to subclass type
I Java checks at run time to make sure it’s legal
I If it’s not legal, it throws ClassCastException

I Upcast:

I Always valid but unnecessary

42 / 65

Using instanceof to Guard a Casting Operation

instanceof can guard against a ClassCastException

1 Object obj = ...;
2 if (obj instanceof Integer) {
3 Integer i = (Integer) obj;
4 int val = i;
5 ...;
6 } else {
7 ...
8 }

43 / 65

Polymorphism Eliminates Nested if Statements

1 Number[] stuff = new Number[10];
2 // each element of stuff must reference actual
3 // object which is a subclass of Number
4 ...
5

6 // Non OO style:
7 if (stuff[i] instanceof Integer)
8 sum += ((Integer) stuff[i]).doubleValue();
9 else if (stuff[i] instanceof Double)

10 sum += ((Double) stuff[i]).doubleValue();
11 ...
12

13 // OO style:
14 sum += stuff[i].doubleValue();

44 / 65

Polymorphism Eliminates Nested if Statements (cont.)

I Polymorphic code style is more extensible; it works
automatically with new subclasses

I Polymorphic code is more efficient; the system does one
indirect branch versus many tests

I Uses of instanceof may suggest poor coding style

45 / 65

Method Overriding and Overloading

Polymorphism

Abstract Classes

Class Object and Casting

Exceptions

Packages and Visibility

46 / 65

Run-time Errors or Exceptions

I Run-time errors

I occur during program execution (i.e. at run-time)
I occur when the JVM detects an operation that it knows to be

incorrect
I cause the JVM to throw an exception

I Examples of run-time errors include

I division by zero
I array index out of bounds
I number format error
I null pointer exception

47 / 65

Class Throwable

I Throwable is the superclass of all exceptions

I All exception classes inherit its methods

48 / 65

Checked and Unchecked Exceptions

I Checked exceptions

I normally not due to programmer error
I generally beyond the control of the programmer
I all input/output errors are checked exceptions
I Examples: IOException, FileNotFoundException

I Unchecked exceptions result from

I programmer error (try to prevent them with defensive
programming)

I a serious external condition that is unrecoverable
I Examples: NullPointerException,

ArrayIndexOutOfBoundsException

49 / 65

Unchecked Exceptions

I The class Error and its subclasses represent errors due to
serious external conditions; they are unchecked

I Example: OutOfMemoryError
I You cannot foresee or guard against them
I While you can attempt to handle them, it is generally not a

good idea as you will probably be unsuccessful

I The class Exception and its subclasses can be handled by a
program; they are also unchecked

I RuntimeException and its subclasses are unchecked
I All others must be either: explicitly caught or explicitly

mentioned as thrown by the method

50 / 65

Checked Example

Suppose we type this code in order to prepare for reading from a
text file...

1 F i l e f i l e = new F i l e (” f i l e . t x t ”) ;
2 Buf f e r edReade r r e a d e r = new Bu f f e r edReade r (new F i l eR e ad e r (

f i l e)) ;

Error: Unhandled exception type
FileNotFoundException

51 / 65

Some Common Unchecked Exceptions

I ArithmeticException: division by zero, etc.

I ArrayIndexOutOfBoundsException

I NumberFormatException: converting a “bad” string to a
number

I NullPointerException

1 @Override
2 public boolean equal (Shape s) {
3 return this.area()==s.area();
4 }

What if s is null? Java does not force us to catch/throw
NullPointerException

52 / 65

Handling Exceptions

I When an exception is thrown, the normal sequence of
execution is interrupted

I Default behavior (no handler)

I Program stops
I JVM displays an error message

I The programmer may provide a handle

I Enclose statements in a try block
I Process the exception in a catch block

53 / 65

The try-catch Sequence
The try-catch sequence resembles an if-then-else statement

1 try {
2 // Execute the following statements until an
3 // exception is thrown
4 ...
5 // Skip the catch blocks if no exceptions were thrown
6 } catch (ExceptionTypeA ex) {
7 // Execute this catch block if an exception of type
8 // ExceptionTypeA was thrown in the try block
9 ...

10 } catch (ExceptionTypeB ex) {
11 // Execute this catch block if an exception of type
12 // ExceptionTypeB was thrown in the try block
13 ...
14 }

I ExceptionTypeB cannot be a subclass of ExceptionTypeA.
If is was, its exceptions would be caught be the first catch
clause and its catch clause would be unreachable.

54 / 65

Using try-catch

User input is a common source of exceptions

1 public static int getIntValue(Scanner scan) {
2 int nextInt = 0; // next int value
3 boolean validInt = false; // flag for valid input
4 while(!validInt) {
5 try {
6 System.out.println("Enter number of kids: ");
7 nextInt = scan.nextInt();
8 validInt = true;
9 } catch (InputMismatchException ex) {

10 scan.nextLine(); // clear buffer
11 System.out.println("Bad data-enter an integer");
12 }
13 }
14 return nextInt;
15 }

55 / 65

Throwing an Exception When Recovery is Not Obvious

I In some cases, you may be able to write code that detects
certain types of errors, but there may not be an obvious way
to recover from them

I In these cases an the exception can be thrown

I The calling method receives the thrown exception and must
handle it

56 / 65

Throwing an Exception When Recovery is Not Obvious
(cont.)

1 public static void processPositiveInteger(int n) {
2 if (n < 0) {
3 throw new IllegalArgumentException("Invalid argument"

);
4 } else {
5 // Process n as required
6 ...
7 }
8 }

57 / 65

Throwing an Exception When Recovery is Not Obvious
(cont.)

A brief side comment: IllegalArgumentException, above, is
unchecked. The following would not be accepted by Java

1 public static void processPositiveInteger(int n) {
2 ... {
3 throw new IOException("Invalid’’);
4 }
5 }

We would have to write

1 public static void processPositiveInteger(int n) throws
IOException {

2 ... {
3 throw new IOException("Invalid’’);
4 }
5 }

58 / 65

Throwing an Exception When Recovery is Not Obvious
(cont.)

1 public static void main(String[] args) {
2 Scanner scan = new Scanner(System.in);
3 try {
4 int num = getIntValue(scan);
5 processPositiveInteger(num);
6 } catch (IllegalArguementException ex) {
7 System.err.println(ex.getMessage());
8 System.exit(1); // error indication
9 }

10 System.exit(0); // normal exit
11 }

59 / 65

Method Overriding and Overloading

Polymorphism

Abstract Classes

Class Object and Casting

Exceptions

Packages and Visibility

60 / 65

Packages and Visibility

I A Java package is a group of cooperating classes

I The Java API is organized as packages

I Indicate the package of a class at the top of the file:
package classPackage;

I Classes in the same package should be in the same directory
(folder)

I The folder must have the same name as the package

I Classes in the same folder must be in the same package

61 / 65

Packages and Visibility

I Classes not part of a package can only access public members
of classes in the package

I If a class is not part of the package, it must access the public
classes by their complete name, which would be
packagename.className

I For example, x = Java.awt.Color.GREEN;

I If the package is imported, the packageName prefix is not
required.

1 import java.awt.Color;
2 ...
3 x = Color.GREEN;

62 / 65

The Default Package

I Files which do not specify a package are part of the default
package

I If you do not declare packages, all of your classes belong to
the default package

I The default package is intended for use during the early stages
of implementation or for small prototypes

I When you develop an application, declare its classes to be in
the same package

63 / 65

Visibility

I We have seen three visibility layers, public, protected, private

I A fourth layer, package visibility, lies between private and
protected

I Classes, data fields, and methods with package visibility are
accessible to all other methods of the same package, but are
not accessible to methods outside the package

I Classes, data fields, and methods that are declared protected
are visible within subclasses that are declared outside the
package (in addition to being visible to all members inside the
package)

I There is no keyword to indicate package visibility

I Package visibility is the default in a package if public,
protected, private are not used

64 / 65

Visibility Supports Encapsulation

I Visibility rules enforce encapsulation in Java

I private: for members that should be invisible even in subclasses
I package: shields classes and members from classes outside the

package
I protected: provides visibility to extenders or classes in the

package
I public: provides visibility to all

I Encapsulation insulates against change: greater visibility
means less encapsulation

I So use the most restrictive visibility possible to get the job
done!

65 / 65

	Method Overriding and Overloading
	Polymorphism
	Abstract Classes
	Class !Object! and Casting
	Exceptions
	Packages and Visibility

