
Data Structures
OOP and Class Hierarchies

CS284

1 / 28

Objectives

I Inheritance, class hierarchies and code reuse

I ADTs and Interfaces

2 / 28

Inheritance and Class Hierarchies

ADTs and Interfaces

3 / 28

Inheritance by Example

I A computer has
I manufacturer
I processor
I RAM
I disk

Computer

String manufacturer
String processor
int ramSize
int diskSize
double processorSpeed

int getRamSize()
int getDiskSize()
double getProcessorSpeed()
Double computePower()
String toString()

4 / 28

Inheritance by Example (cont.)

/** Class that represents a computers */
public class Computer {
// Data fields
private String manufacturer;
private String processor;
private double ramSize;
private int diskSize;
private double processorSpeed;

5 / 28

Inheritance by Example (cont.)

// Methods
/** Initializes a Computer object with all properties specified.

@param man The computer manufacturer
@param processor The processor type
@param ram The RAM size
@param disk The disk size
@param procSpeed The processor speed

*/
public Computer(String man, String processor, double ram, int disk, double procSpeed) {

manufacturer = man;
this.processor = processor;
ramSize = ram;
diskSize = disk;
processorSpeed = procSpeed;

}

6 / 28

Inheritance by Example (cont.)

public double computePower()
{ return ramSize * processorSpeed; }

public double getRamSize() { return ramSize; }
public double getProcessorSpeed()

{ return processorSpeed; }
public int getDiskSize() { return diskSize; }
// insert other accessor and modifier methods here

public String toString() {
String result = "Manufacturer: " + manufacturer +

"\nCPU: " + processor +
"\nRAM: " + ramSize + " megabytes" +
"\nDisk: " + diskSize + " gigabytes" +
"\nProcessor speed: " + processorSpeed +

" gigahertz";
return result;

}
}

7 / 28

Inheritance by Example (cont.)

I A Notebook has all the properties of
Computer,
I manufacturer
I processor
I RAM
I Disk

I plus,
I screen size
I weight

Computer

String manufacturer
String processor
int ramSize
int diskSize
double processorSpeed

int getRamSize()
int getDiskSize()
double getProcessorSpeed()
Double computePower()
String toString()

Notebook

double screenSize
double weight

8 / 28

Inheritance by Example (cont.)

/** Class that represents a notebook computer */
public class Notebook extends Computer {
// Data fields
private double screenSize;
private double weight;

. . .
}

I The data fields declared in Computer are also available to
Notebook: they are inherited

I The methods declared in Computer are also available to
Notebook: they are inherited
I But Notebook still needs its own constructor for initializing its

notebook-specific data
I Lets take a closer look at this

9 / 28

Constructors in a Subclass

I They begin by initializing the data fields inherited from the
superclass(es)

super(man, proc, ram, disk, procSpeed);

I This invokes the superclass constructor with the signature

Computer(String man, String processor, double ram, int disk, double procSpeed)

I They then initialize the data specific to their class, in this case
to notebooks

screenSize = screen;
weight = wei;

10 / 28

Constructors in a Subclass (cont.)

// methods
//* Initializes a Notebook object with all properties specified.

@param man The computer manufacturer
@param processor The processor type
@param ram The RAM size
@param disk The disk size
@param procSpeed The processor speed
@param screen The screen size
@param wei The weight

*/
public Notebook(String man, String processor, double ram, int disk, double procSpeed, double screen, double wei)
{

super(man, proc, ram, disk, procSpeed);
screenSize = screen;
weight = wei;

}

11 / 28

The No-Parameter Constructor

I If the execution of any constructor in a subclass does not
invoke a superclass constructor – an explicit call to super() –
Java automatically invokes the no-parameter constructor for
the superclass

I If no constructors are defined for a class, the no-parameter
constructor for that class is provided by default

I However, if any constructors are defined, you must explicitly
define a no-parameter constructor

12 / 28

Protected vs Private Data Fields

I Variables with private visibility cannot be accessed by a
subclass
I They are still there (they are inherited)
I Just that to access them we have to use the methods defined

in class Computer
I An alternative is to declare them protected rather than

private

I Variables with protected visibility (defined by the keyword
protected) are accessible by any subclass or any class in the
same package

I In general, it is better to use private visibility and to restrict
access to variables to accessor methods

13 / 28

Is-a versus Has-a Relationships

I In an is-a or inheritance relationship, one class is a subclass of
the other class

I In a has-a or aggregation relationship, one class has the other
class as an attribute

14 / 28

Is-a versus Has-a Relationships

public class Computer {
private Memory mem;
...

}

public class Memory {
private int size;
private int speed;
private String kind;
...

}

I A Computer has only one Memory

I But a Computer is not a Memory (i.e. not an is-a relationship)

I If a Notebook extends Computer, then the Notebook is-a
Computer

15 / 28

Inheritance and Class Hierarchies

ADTs and Interfaces

16 / 28

Abstract Data Types

I An encapsulation of data and methods

I Allows for reusable code
I The user

I need not know about the implementation of the ADT
I interacts with the ADT using only public methods

I ADTs facilitate storage, organization, and processing of
information

I The Java Collections Framework provides implementations of
common ADTs

17 / 28

Interfaces

I A Java interface specifies or describes an ADT to the
applications programmer:
I the methods and the actions that they must perform
I what arguments, if any, must be passed to each method
I what result the method will return

I The interface can be viewed as a contract which guarantees
how the ADT will function

18 / 28

Interfaces

I A class that implements the interface provides code for the
ADT

I As long as the implementation satisfies the ADT contract, the
programmer may implement it as he or she chooses

I In addition to implementing all data fields and methods in the
interface, the programmer may add:
I data fields not in the interface
I methods not in the interface
I constructors (an interface cannot contain constructors because

it cannot be instantiated)

19 / 28

Example: ATM Interface

I An automated teller machine (ATM) enables a user to
perform certain banking operations from a remote location.

I It must provide operations to:
I verify a user’s Personal Identification Number (PIN)
I allow the user to choose a particular account
I withdraw a specified amount of money
I display the result of an operation
I display an account balance

I A class that implements an ATM must provide a method for
each operation

20 / 28

Example: ATM Interface

Interface:

I verify a user’s PIN

I allow the user to
choose a particular
account

I withdraw a
specified amount of
money

I display the result of
an operation

I display an account
balance

Code:

public interface ATM {

/** Verifies a user’s PIN.
@param pin The user’s PIN

*/
boolean verifyPIN(String pin);

/** Allows user to select account.
@return a String representing

the account selected

*/
String selectAccount();

21 / 28

Example: ATM Interface

Interface:

I verify a user’s PIN

I allow the user to
choose a particular
account

I withdraw a
specified amount of
money

I display the result of
an operation

I display an account
balance

Code:

public interface ATM {

/** Verifies a user’s PIN.
@param pin The user’s PIN

*/
boolean verifyPIN(String pin);

/** Allows user to select account.
@return a String representing

the account selected

*/
String selectAccount();

21 / 28

Example: ATM Interface

Interface:

I verify a user’s PIN

I allow the user to
choose a particular
account

I withdraw a
specified amount of
money

I display the result of
an operation

I display an account
balance

Code:

public interface ATM {

/** Verifies a user’s PIN.
@param pin The user’s PIN

*/
boolean verifyPIN(String pin);

/** Allows user to select account.
@return a String representing

the account selected

*/
String selectAccount();

21 / 28

Example: ATM Interface

Interface:

I verify a user’s PIN

I allow the user to
choose a particular
account

I withdraw a
specified amount of
money

I display the result of
an operation

I display an account
balance

Code:

public interface ATM {

/** Verifies a user’s PIN.
@param pin The user’s PIN

*/
boolean verifyPIN(String pin);

/** Allows user to select account.
@return a String representing

the account selected

*/
String selectAccount();

21 / 28

Example: ATM Interface

Interface:

I verify a user’s PIN

I allow the user to
choose a particular
account

I withdraw a
specified amount of
money

I display the result of
an operation

I display an account
balance

Code:

/** Withdraws a specified amount
of money
@param account The account

from which the money
comes

@param amount The amount of
money withdrawn

@return whether or not the
operation is
successful

*/
boolean withdraw(String account,

double amount);

22 / 28

Example: ATM Interface

Interface:

I verify a user’s PIN

I allow the user to
choose a particular
account

I withdraw a
specified amount of
money

I display the result of
an operation

I display an account
balance

Code:

/** Displays the result of an
operation
@param account The account

from which money was
withdrawn

@param amount The amount of
money withdrawn

@param success Whether or not
the withdrawal took
place

*/
void display(String account,

double amount,
boolean success);

23 / 28

Example: ATM Interface

Interface:

I verify a user’s PIN

I allow the user to
choose a particular
account

I withdraw a
specified amount of
money

I display the result of
an operation

I display an account
balance

Code:

/** Displays an account balance
@param account The account

selected

*/
void showBalance(String account);

}

Note: Interfaces may include declaration of constants; these are
accessible in classes that implement the interface

24 / 28

The implements clause

I For a class to implement an interface, it must end with the
implements clause

public class ATMbankAmerica implements ATM
public class ATMbankCiti implements ATM

I A class may implement more than one interface—their names
are separated by commas

25 / 28

UML Diagram of Interface & Implementers

«interface»
ATM

boolean verifyPIN(String pin)
String selectAccount()
boolean withdraw(String account, double amount)
void display(String account, double amount, boolean success)
void display(String pin, boolean success)
void showBalance(String account)

ATMbankOfAmerica

boolean verifyPIN(String pin)
String selectAccount()
boolean withdraw(String account, double amount)
void display(String account, double amount, boolean success)
void display(String pin, boolean success)
void showBalance(String account)

ATMCitiBank

boolean verifyPIN(String pin)
String selectAccount()
boolean withdraw(String account, double amount)
void display(String account, double amount, boolean success)
void display(String pin, boolean success)
void showBalance(String account)

26 / 28

The implements Clause: Pitfalls

I The Java compiler verifies that a class defines all the abstract
methods in its interface(s)
I A syntax error will occur if a method is not defined or is not

defined correctly

I You cannot instantiate an interface; it will cause an error

ATM anATM = new ATM(); // invalid statement

27 / 28

Declaring a Variable of an Interface Type

While you cannot instantiate an interface, you can declare a
variable that has an interface type

/* expected type */
ATMbankAmerica ATM0 = new ATMBankAmerica();

/* interface type */
ATM ATM1 = new ATMBankAmerica();
ATM ATM2 = new ATMCitiBank();

The reason for wanting to do this will become clear when we
discuss polymorphism

28 / 28

	Inheritance and Class Hierarchies
	ADTs and Interfaces

