Data Structures
CS284

/59

The 284-A Spring 2022 Team

Instructor: Michael Greenberg

Email: mgreenbel@stevens.edu
(but please use Discord!)

CAs: (alphabetical) Venkat Anna, Cindy Tran

https://greenberg.science/courses/cs284s22/

59

mgreenbe@stevens.edu
https://greenberg.science/courses/cs284s22/

Ask questions!

» Learning goes both ways in this course

» Ask questions in class

» Ask questions on Discord

» Seek me out during office hours and...ask questions!
» What was the last question you asked this week?

» Have you considered asking a question?

» Psst, hey, kid... want to ask a question? First one’s free. So
are the others.

3/59

About this course

This is a course on data structures
» Focus on algorithms

v

v

It is not a course on Java nor object-oriented programming

v

We do, however, need a PL in which to put our ideas to work
That shall be Java

We could have used others too

v

v

59

Why Java?

v

Industry standard (for now)

v

Large ecosystem

v

Not tied to any particular architecture (Java Virtual Machine)

v

Other advantages include security and extensibility

5/59

Bibliography

> Intro to Java: Koffman and Wolfgang. Appendix A

DATA
STRUCIURES

» Assignment: Install Eclipse as soon as possible!

» Also install the Java Development Kit

6/59

Intro to Java

v

We will dedicate the first two weeks to Java

v

This is not meant to be an exhaustive coverage
> It is meant to start you off

» You must practice

v

Strongly recommended: try out the snippets of code from the
slides

59

Important Information in the Syllabus (Excerpt)

Homework
» Policy for late submissions: 2 points off for every hour past
the deadline.

» 0 if code does not compile (submit your . java, but it must
properly compile to .class)

» 0 if you submit an empty or corrupted archive

59

Quizzes

> 0 if absent
» Solved in class immediately after handing it in
» You receive two copies of a quiz

» One copy is handed in (this is not returned)
» The other copy is for writing down feedback

59

Exams

» Two

» Midterm
» Endterm

» Midterm and final exam dates are listed in the tentative
course schedule on the websit

» Final date TBD

10/59

Weight of Grading Categories

Homework
Quizzes
Midterm
Final

35%
15%
25%
25%

11/59

Getting in touch

v

Use Discord, not email

v

Use #logistics for course logistics

v

Use #g-and-a for questions about material

v

Use #tools for questions about Java, Eclipse, etc.

v

Use #memes for memes (but keep it clean and respectful)

12 /59

On Slides

> In most lectures | explain by coding directly in Java

» You are expected to follow my explanations
» You are not expected to type everything | type myself
» The code from the lectures will be made available on the

website after the lecture

» Slides are nevertheless important

» They contain examples and concepts that are, many times,
complementary to the ones | present in class
» Be sure to read them in your own time

13 /59

Remaining Slides

What follows marks the first of the set of supporting slides that
you are to start reading at your own pace and in your own time

14 /59

Java Basics
Classes
Methods
An Example

Type Compatibility and Conversion
Referencing Objects

Parameter Passing is Call-by-Value
More Java Tidbits

15/59

Object-Oriented System

v

A set of entities that collaborate with each other in order to
perform some specific task

Entities usually go by the name of objects

Collaboration is achieved by sending messages from one object
to another

This is one of many models to which a programmer can resort
in order to address a (programming) problem

It is attractive because, in many cases, it reflects rather well
the real world entities begin modelled

16

59

Java is Object-Oriented

v

Java is a PL for implementing object-oriented systems

v

A Java program is a collection of classes

v

It is based on classes

v

A class is a named description for a group of entities that
have the same characteristics

» Entities: Objects or instances of the class
» Characteristics: attributes (data fields) for each object and the
operations (methods) that can be performed on these objects

17 /59

UML Diagram

» Graphical representation of classes

Class Name

Rectangle

Attributes

Methods

double width
double height

Rectangle(double x, double y)
double area()

18 /59

Rectangle Example

» Class definitions in .java files

public class Rectangle({
// data fields
private double width;
private double height;

// methods

public Rectangle (double x, double vy) {
width = x;
height = y;

public double area() {
return width+xheight;

19/59

Rectangle Example

» Class definitions in .java files

public class Rectangle({
// data fields
private double width;
private double height;

// methods

public Rectangle (double x, double vy) {
width = x;
height = y;

public double area() {
return width+xheight;

19/59

Rectangle Example

» Class definitions in .java files

public class Rectangle({
// data fields
private double width;
private double height;

// methods

width = x;

public double area() {

19/59

Creating Objects Instances of Classes

» Objects may be instantiated from classes using the new
keyword

> E.g: new Rectangle (3.5, 2.6)

» We can create as many instances as required

// text goes in main () method

// create a rectangle with width 3.5 and height 2.6
Rectangle rectl = new Rectangle (3.5, 2.6);
Rectangle rect2 = new Rectangle(7.2, 8.4);

// get their area
double ar;

ar = rectl.area();
ar = rect2.areal();

20 /59

Data Fields and Types

» Data fields are variables

» Variables must be declared with a type before use

» There are primitive data types:

byte

-128 to 127

short

-32,768 to 32,767

int

-2,147,483,648 to 2,147,483,647

long

—203 10 2% —1

float

32-bit IEEE 754 floating point

double

64-bit IEEE 754 floating point

char

Unicode character set

boolean

true, false

» Special support is provided for strings through the
java.lang.String class

» Class names are also types (more on this later)

21/59

Methods

» A group of statements to perform a particular operation
(similar to functions/procedures in other languages)

» Methods are either class or instance methods
» Instance Methods: Applied to an object using dot notation
object.method (arguments)
» Eg.
rect.area();
» Class Methods: Applied to a class using dot notation

class.method (arguments)

> An example follows

Static Methods

public class Rectangle {
private double width;
private double height;
private static int numberOfRectangles = 0;

public Rectangle (double x, double vy) {
width = x;
height = y;
numberOfRectangles++;

}

public static int getNumberOfRectangles () {
return numberOfRectangles;

23/

Static Methods

public class Rectangle {
private double width;
private double height;
private static int numberOfRectangles = 0;

public Rectangle (double x, double vy) {
width = x;
height = y;
numberOfRectangles++;
}
public static int getNumberOfRectangles () {
return numberOfRectangles;

» static indicates that it is a class method
» There is one per class
» Called using dot notation
int i = Rectangle.getNumberOfRectangles();
» Static methods cannot call instance methods

23 /59

Static vs Instance Methods

public class Car {

?? float km2Miles (float km)
?? float getOdometerMiles ()

24 /59

The nain method

Point where execution begins

public static void main(String[] args) {
}
Eg.

public class Rectangle {

public static void main(String[] args) {
Rectangle rect = new Rectangle(3.5, 2.6);
double ar;
ar = rect.areal();
System.out.println (ar);

25 /59

Java Basics

An Example

26 /59

A CIaSS Person

» Attributes:

» Given name
» Family name
» |ID number

» Year of birth

» It can perform operations such as:

» Calculate person’s age

Test whether two Person objects refer to same person
Determine if the person is old enough to vote

Get one or more of the data fields from the Person object
Set one or more of the data fields of the Person object

v

v vy

27 /59

UML Diagram for Class Person

Person

String givenName
String familyName
String IDNumber

int birthYear

int age()
boolean canVote()
boolean isSenior()

> Style: use of camel notation such as in myvariable and
thisLongIdentifier

28 /59

Defining the Class Person

public class Person {

// Data
/+* The
private
/*+ The
private
/** The
private
/+* The
private

Comments

Fields

given name */

String givenName;
family name =/

String familyName;

ID number =/

String IDNumber;
birth year =/

int birthYear = 1900;

in code:

// NS [xx... %/ NS /% ...

*/

29/

59

Defining the Class Person

// Constants

/+* The age at which a person can vote =/

private static final int VOTE_AGE = 18;

/+* Age at which person considered senior citizen */
private static final int SENIOR_AGE = 65;

» Style: Primitive type constants all uppercase

30/59

Private Data Fields and Public Methods

> Access modifiers such as public and private let you control
what other classes have access to a member field

» public: the field/method is accessible from all classes

> private: the field/method is accessible only within its own
class

» Common to make fields private and methods public

» Details of how data are stored and represented can be
changed without affecting class's clients

31/59

// Constructors
/+* Construct a person with given values
@param first The given name
@param family The family name
@param ID The ID number
@param birth The birth year
x/
public Person(String first, String family, String ID, int bi
givenName = first;

familyName = family;
IDNumber = ID;
birthYear = birth;

/+* Construct a person with only IDNumber specified.
@param ID The ID number
*/
public Person (String ID) {
IDNumber = ID;

32/59

Constructors

» Four-parameter

public Person(String first, String family, String ID, int

» One-parameter
public Person(String ID) {...}
> No-parameter constructor is not defined; the following is

invalid

» Person p = new Person ()

» No-parameter constructor has to be explicitly defined if other
constructors are defined

33/59

Instance Methods for Modifying Instance Variables

// Modifier Methods
/** Sets the givenName field.
@param given The given name
*/
public void setGivenName (String given) {
givenName = given;

/*x Sets the familyName field.
@param family The family name
*/
public void setFamilyName (String family) {
familyName = family;

34 /59

Use of tnis

/*+ Sets the birthYear field.
@param birthYear The year of birth
x/
public void setBirthYear (int birthYear) {
this.birthYear = birthYear;

> birthvear is interpreted by the Java compiler as the local
variable (parameter here) and not the data field with the same
name

35/59

Sample Instance Methods for Accessing Instance Variables

// Accessor Methods
/** Gets the person’s given name.
@return the given name as a String
*/
public String getGivenName () {
return givenName;

/*x Gets the person’s family name.
@return the family name as a String
x/
public String getFamilyName () {
return familyName;

36 /59

// Other Methods
/*x Calculates person’s age at this year’s birthday.
@param year The current year
@return the year minus the birth year
x/
public int age (int year) {
return year - birthYear;

/+* Determines whether a person can vote.
@param year The current year
@return true if the person’s age is greater than
or equal to the voting age
x/
public boolean canVote (int year) ({
int theAge = age(year);
return theAge >= VOTE_AGE;

37/59

The Method toString

/+* Retrieves the information in a Person object.
@return the object state as a string

*/
public String toString() {
return "Given name: " + givenName + "\n"
+ "Family name: " + familyName + "\n"
+ "ID number: " + IDNumber + "\n"
+ "Year of birth: " + birthYear + "\n";

» Display the state of authorl (an instance of Person):

System.out.println (authorl.toString());
System.out.println (authorl) ;

> System.out.println and System.out.print automatically
apply method tostring () to an object that appears in their
argument list

38 /59

The Method equals

/+* Compares two Person objects for equality.
@param per The second Person object
@return true if the Person objects have same
ID number; false if they don’t
*/
public boolean equals (Person per) {
if (per == null)
return false;
else
return IDNumber.equals (per.getIDNumber ());

}

We can look at per’s private ID number because per references an
object of this class (Person)

39 /59

Testing ClaSS Person

public class TestPerson {

public static void main (String[] args) {
Person pl = new Person("Sam", "Jones", "1234", 1930);
Person p2 = new Person("Sue", "Jones", "5678", 1990);

System.out.println("Age of " + pl.getGivenName () +
" is " + pl.age(2012));

// prints: Age of Sam is 82

40 /59

Testing ClaSS Person

public class TestPerson ({

public static void main (String[] args) {
Person pl = new Person("Sam", "Jones", "1234",
Person p2 = new Person("Sue", "Jones", "5678",

if (pl.isSenior (2004))
System.out .println (pl.getGivenName () +

1930) ;
1990) ;

" can ride the subway for free");

else
System.out .println (pl.getGivenName () +

" must pay to ride the subway");

// prints: Sam can ride the subway for free

41 /59

Testing ClaSS Person

public class TestPerson {

public static void main(String[] args) {
Person pl = new Person("Sam", "Jones", "1234", 1930);
Person p2 = new Person("Sue", "Jones", "5678", 1990);

System.out .println ("Age of " + p2.getGivenName () +
" is " + p2.age(2012));

// prints: Age of Sue is 22
if (p2.canVote (2004))
System.out.println (p2.getGivenName () +" can vote");
else

System.out.println (p2.getGivenName () +" can’t vote");

// prints: Sue can’t vote

42 /59

Classes
Methods
An Example

Arrays

Type Compatibility and Conversion
Referencing Objects

Parameter Passing is Call-by-Value
More Java Tidbits

43 /59

Arrays

int[] scores = new int[5];

> Declares an array of size 5
» First item starts at index 0
> Arrays are initialized by default in Java
» This prints five zeros
int[] scores = new int([5];
for (int i=0; i<5; i++) {

System.out.println (scores[i]);
bi

44 /59

Arrays

» We can also initialize the elements with our own values

String[] names = {"Sally", "Jill", "Hal", "Rick"};
System.out .println (names.length);
// length above is data field, not a method

» The elements of an array can also have user defined types

Person|[] people;

int n = 3+4;

people = new Person[n];

people[0] = new Person("Elliot","Koffman","123",1942);

45 /59

Arrays

» There is an enhanced for loop for collections, arrays included
> Rather than

for (int i=0; 1i<5; i++) {
System.out.println(scores[i]);
}i

» We can write

for (int 1 : scores) {
System.out.println (scores[i]);

}i

46 /59

Two-Dimensional Arrays

final int ROWS = 3;
final int COLS = 3;
double[] [] matrix = new double[ROWS] [COLS];
for (int i =0; i<ROWS; i++) {
for (int j=0; j<COLS; j++) {
System.out.println(matrix[1i][]]);

}

47 /59

Classes
Methods
An Example

More Java
Type Compatibility and Conversion
Referencing Objects
Parameter Passing is Call-by-Value
More Java Tidbits

48 /59

Type Compatiblity and Conversion

» When mixed type operands are used, the type with the smaller
range is converted to the type of the larger range

» E.g. int+double is converted to double

» Widening conversion

int item = 42;
double realltem = item; // valid ?

double y = 3.14;
int x = y; // valid ?

49 /59

Type Compatiblity and Conversion

» When mixed type operands are used, the type with the smaller
range is converted to the type of the larger range

» E.g. int+double is converted to double

» Widening conversion

int item = 42;
double realltem = item; // valid ?

double y = 3.14;
int x = y; // valid ?

“Type mismatch: cannot convert from double to int"

49 /59

Type Compatiblity and Conversion

» We can add a type cast to instruct the compiler that y should
be considered as having type int

double y = 3.14;
int x = (int) y;

50 /59

Referencing Objects

String greeting;

greeting = "hello";
» String object “hello” is now referenced by greeting
> greeting stores the address where a particular String is stored
» Primitive types store values not addresses (Eg. x=3)
» Two reference variables can reference the same object
String welcome=greeting;
> copies the address in greeting to welcome

51/59

Referencing Objects — Copying an Array

» Assignment copies only references to objects

» Eg. The following prints 8

int[] datal = {1,2,3,4,5};
int[] data2 datal;

data2[0] = 8;
System.out.println(datal[0]);

> In order to make a copy of an array we use the clone method

» Eg. The following prints 1

int[] datal = {1,2,3,4,5};
int[] data2 datal.clone () ;
data2[0] = 8;
System.out.println (datal[0]);

52 /59

Parameter Passing is Call-by-Value

> In Java all arguments are call-by-value

> If the argument is a primitive type, its value, not its address,
are passed to the method

» The method cannot modify the argument value and have this
modification remain after returning

> If the argument is of class type, it can be modified using its
own methods and the changes are permanent

» Other languages also support call-by-reference

53 /59

Parameter Passing is Call-by-Value

public void foo (Dog d) {
d = new Dog("Snoopy"); // creates the "Snoopy" dog

Dog aDog = new Dog("Pluto"); // creates the "Pluto" dog
// aDog points to the "Pluto" dog
foo (aDhog) ;

// aDog still points to the "Pluto" dog

54 /59

The matn Class

» Collection of useful methods
» All static

public class SquareRoots {
public static void main(String[] args) {
System.out.println("n \tsquare root");
for (int n = 1; n <= 10; n++) {
System.out.println(n + "\t" +
Math.sqgrt (n));

55 /59

The string Class

Assume keyboard is a String that contains "qwerty”

keyboard.charAt (0) // g
keyboard.length () // 6
keyboard.indexOf ("o’) // -1
keyboard.indexOf ("y’) // 5

String upper=keyboard.toUpperCase () ;

Creates a new string object without changing keyboard

56 /59

Strings are Immutable

» Strings are different from other objects in that they are
immutable

» A String object cannot be modified

» New Strings are generated when changes are made

String myName = "Elliot Koffman";

myName = myName.substring(7) + ", " + myName.substring (0,

myName [0]= ’'X’; // invalid, String is not an Array
myName.charAt (0)= 'X’; // invalid

6);

57 /59

Comparing Objects

String myName = "Elliot Koffman";

String anyName = new String (myName) ;
System.out.println (anyName == myName); // false
System.out.println (anyName.equals (myName)); // true

» == operator compares the addresses and not the contents of
the objects

» Use equals, equalsIgnoreCase, compareTo (Iexicographic
Comparison), compareToIgnoreCase

» Comparison methods need to be implemented for user-defined
classes

58 /59

Wrapper Class for Primitive Types

v

Primitive numeric types are not objects, but sometimes they
need to be processed like objects

Eg. When primitive types must be inserted into collections

Java provides wrapper classes whose objects contain
primitive-type values

byte Byte float Float
boolean Boolean int Integer

char Character long Long
double Double short Short

They provide constructor methods to create new objects that
“wrap” a specified value and methods to “unwrap”

This is typically done automatically in most cases (process
known as autoboxing)

59 /59

	Java Basics
	Classes
	Methods
	An Example

	Arrays
	More Java
	Type Compatibility and Conversion
	Referencing Objects
	Parameter Passing is Call-by-Value
	More Java Tidbits

