
Data Structures
CS284

1 / 59

The 284-A Spring 2022 Team

Instructor: Michael Greenberg

Email: mgreenbe@stevens.edu
(but please use Discord!)

CAs: (alphabetical) Venkat Anna, Cindy Tran

https://greenberg.science/courses/cs284s22/

2 / 59

mgreenbe@stevens.edu
https://greenberg.science/courses/cs284s22/

Ask questions!

I Learning goes both ways in this course

I Ask questions in class

I Ask questions on Discord

I Seek me out during office hours and...ask questions!

I What was the last question you asked this week?

I Have you considered asking a question?

I Psst, hey, kid... want to ask a question? First one’s free. So
are the others.

3 / 59

About this course

I This is a course on data structures
I Focus on algorithms

I It is not a course on Java nor object-oriented programming

I We do, however, need a PL in which to put our ideas to work

I That shall be Java

I We could have used others too

4 / 59

Why Java?

I Industry standard (for now)

I Large ecosystem

I Not tied to any particular architecture (Java Virtual Machine)

I Other advantages include security and extensibility

5 / 59

Bibliography

I Intro to Java: Koffman and Wolfgang. Appendix A

I Assignment: Install Eclipse as soon as possible!

I Also install the Java Development Kit

6 / 59

Intro to Java

I We will dedicate the first two weeks to Java

I This is not meant to be an exhaustive coverage

I It is meant to start you off

I You must practice

I Strongly recommended: try out the snippets of code from the
slides

7 / 59

Important Information in the Syllabus (Excerpt)

Homework

I Policy for late submissions: 2 points off for every hour past
the deadline.

I 0 if code does not compile (submit your .java, but it must
properly compile to .class)

I 0 if you submit an empty or corrupted archive

8 / 59

Quizzes

I 0 if absent

I Solved in class immediately after handing it in

I You receive two copies of a quiz

I One copy is handed in (this is not returned)
I The other copy is for writing down feedback

9 / 59

Exams

I Two

I Midterm
I Endterm

I Midterm and final exam dates are listed in the tentative
course schedule on the websit

I Final date TBD

10 / 59

Weight of Grading Categories

Homework 35%
Quizzes 15%
Midterm 25%
Final 25%

11 / 59

Getting in touch

I Use Discord, not email

I Use #logistics for course logistics

I Use #q-and-a for questions about material

I Use #tools for questions about Java, Eclipse, etc.

I Use #memes for memes (but keep it clean and respectful)

12 / 59

On Slides

I In most lectures I explain by coding directly in Java

I You are expected to follow my explanations
I You are not expected to type everything I type myself
I The code from the lectures will be made available on the

website after the lecture

I Slides are nevertheless important

I They contain examples and concepts that are, many times,
complementary to the ones I present in class

I Be sure to read them in your own time

13 / 59

Remaining Slides

What follows marks the first of the set of supporting slides that
you are to start reading at your own pace and in your own time

14 / 59

Java Basics
Classes
Methods
An Example

Arrays

More Java
Type Compatibility and Conversion
Referencing Objects
Parameter Passing is Call-by-Value
More Java Tidbits

15 / 59

Object-Oriented System

I A set of entities that collaborate with each other in order to
perform some specific task

I Entities usually go by the name of objects

I Collaboration is achieved by sending messages from one object
to another

I This is one of many models to which a programmer can resort
in order to address a (programming) problem

I It is attractive because, in many cases, it reflects rather well
the real world entities begin modelled

16 / 59

Java is Object-Oriented

I Java is a PL for implementing object-oriented systems

I A Java program is a collection of classes

I It is based on classes

I A class is a named description for a group of entities that
have the same characteristics

I Entities: Objects or instances of the class
I Characteristics: attributes (data fields) for each object and the

operations (methods) that can be performed on these objects

17 / 59

UML Diagram

I Graphical representation of classes

Class Name

Attributes

Methods

Rectangle

double width
double height

Rectangle(double x, double y)
double area()

18 / 59

Rectangle Example

I Class definitions in .java files

public class Rectangle{
// data fields
private double width;
private double height;

// methods
public Rectangle(double x, double y){

width = x;
height = y;

}

public double area(){
return width*height;

}
}

19 / 59

Rectangle Example

I Class definitions in .java files

public class Rectangle{
// data fields
private double width;
private double height;

// methods
public Rectangle(double x, double y){

width = x;
height = y;

}

public double area(){
return width*height;

}
}

19 / 59

Rectangle Example

I Class definitions in .java files

public class Rectangle{
// data fields
private double width;
private double height;

// methods
public Rectangle(double x, double y){

width = x;
height = y;

}

public double area(){
return width*height;

}
}

19 / 59

Creating Objects Instances of Classes

I Objects may be instantiated from classes using the new

keyword

I E.g.: new Rectangle(3.5, 2.6)

I We can create as many instances as required

// text goes in main() method
// create a rectangle with width 3.5 and height 2.6
Rectangle rect1 = new Rectangle(3.5, 2.6);
Rectangle rect2 = new Rectangle(7.2, 8.4);

// get their area
double ar;
ar = rect1.area();
ar = rect2.area();

20 / 59

Data Fields and Types

I Data fields are variables

I Variables must be declared with a type before use

I There are primitive data types:

byte -128 to 127
short -32,768 to 32,767
int -2,147,483,648 to 2,147,483,647
long −263 to 263 − 1
float 32-bit IEEE 754 floating point
double 64-bit IEEE 754 floating point
char Unicode character set
boolean true, false

I Special support is provided for strings through the
java.lang.String class

I Class names are also types (more on this later)

21 / 59

Methods

I A group of statements to perform a particular operation
(similar to functions/procedures in other languages)

I Methods are either class or instance methods

I Instance Methods: Applied to an object using dot notation

object.method(arguments)

I E.g.

rect.area();

I Class Methods: Applied to a class using dot notation

class.method(arguments)

I An example follows

22 / 59

Static Methods
public class Rectangle {
private double width;
private double height;
private static int numberOfRectangles = 0;

public Rectangle(double x, double y){
width = x;
height = y;
numberOfRectangles++;

}
public static int getNumberOfRectangles() {

return numberOfRectangles;
}

}

I static indicates that it is a class method
I There is one per class
I Called using dot notation

int i = Rectangle.getNumberOfRectangles();

I Static methods cannot call instance methods

23 / 59

Static Methods
public class Rectangle {
private double width;
private double height;
private static int numberOfRectangles = 0;

public Rectangle(double x, double y){
width = x;
height = y;
numberOfRectangles++;

}
public static int getNumberOfRectangles() {

return numberOfRectangles;
}

}

I static indicates that it is a class method
I There is one per class
I Called using dot notation

int i = Rectangle.getNumberOfRectangles();

I Static methods cannot call instance methods
23 / 59

Static vs Instance Methods

public class Car {
...
?? float km2Miles(float km)
?? float getOdometerMiles()

}

24 / 59

The main method

Point where execution begins

public static void main(String[] args){
...
}

Eg.

public class Rectangle {
...
public static void main(String[] args){

Rectangle rect = new Rectangle(3.5, 2.6);
double ar;
ar = rect.area();
System.out.println(ar);

}
}

25 / 59

Java Basics
Classes
Methods
An Example

Arrays

More Java
Type Compatibility and Conversion
Referencing Objects
Parameter Passing is Call-by-Value
More Java Tidbits

26 / 59

A class Person

I Attributes:
I Given name
I Family name
I ID number
I Year of birth

I It can perform operations such as:
I Calculate person’s age
I Test whether two Person objects refer to same person
I Determine if the person is old enough to vote
I Get one or more of the data fields from the Person object
I Set one or more of the data fields of the Person object

27 / 59

UML Diagram for Class Person

Person

String givenName
String familyName
String IDNumber
int birthYear

int age()
boolean canVote()
boolean isSenior()

I Style: use of camel notation such as in myVariable and
thisLongIdentifier

28 / 59

Defining the Class Person

public class Person {
// Data Fields
/** The given name */
private String givenName;
/** The family name */
private String familyName;
/** The ID number */
private String IDNumber;
/** The birth year */
private int birthYear = 1900;

Comments in code:

// vs /**... */ vs /*... */

29 / 59

Defining the Class Person

// Constants
/** The age at which a person can vote */
private static final int VOTE_AGE = 18;
/** Age at which person considered senior citizen */
private static final int SENIOR_AGE = 65;

I Style: Primitive type constants all uppercase

30 / 59

Private Data Fields and Public Methods

I Access modifiers such as public and private let you control
what other classes have access to a member field

I public: the field/method is accessible from all classes

I private: the field/method is accessible only within its own
class

I Common to make fields private and methods public

I Details of how data are stored and represented can be
changed without affecting class’s clients

31 / 59

// Constructors
/** Construct a person with given values

@param first The given name
@param family The family name
@param ID The ID number
@param birth The birth year

*/
public Person(String first, String family, String ID, int birth) {

givenName = first;
familyName = family;
IDNumber = ID;
birthYear = birth;

}

/** Construct a person with only IDNumber specified.
@param ID The ID number

*/
public Person(String ID) {

IDNumber = ID;
}

32 / 59

Constructors

I Four-parameter

public Person(String first, String family, String ID, int birth) {...}

I One-parameter

public Person(String ID) {...}

I No-parameter constructor is not defined; the following is
invalid

I Person p = new Person()

I No-parameter constructor has to be explicitly defined if other
constructors are defined

33 / 59

Instance Methods for Modifying Instance Variables

// Modifier Methods
/** Sets the givenName field.

@param given The given name

*/
public void setGivenName(String given) {

givenName = given;
}

/** Sets the familyName field.
@param family The family name

*/
public void setFamilyName(String family) {

familyName = family;
}

34 / 59

Use of this

/** Sets the birthYear field.
@param birthYear The year of birth

*/
public void setBirthYear(int birthYear) {

this.birthYear = birthYear;
}

I birthYear is interpreted by the Java compiler as the local
variable (parameter here) and not the data field with the same
name

35 / 59

Sample Instance Methods for Accessing Instance Variables

// Accessor Methods
/** Gets the person’s given name.

@return the given name as a String

*/
public String getGivenName() {
return givenName;

}

/** Gets the person’s family name.
@return the family name as a String

*/
public String getFamilyName() {
return familyName;

}

36 / 59

// Other Methods
/** Calculates person’s age at this year’s birthday.

@param year The current year
@return the year minus the birth year

*/
public int age(int year) {
return year - birthYear;

}

/** Determines whether a person can vote.
@param year The current year
@return true if the person’s age is greater than

or equal to the voting age

*/
public boolean canVote(int year) {
int theAge = age(year);
return theAge >= VOTE_AGE;

}

37 / 59

The Method toString

/** Retrieves the information in a Person object.
@return the object state as a string

*/
public String toString() {

return "Given name: " + givenName + "\n"
+ "Family name: " + familyName + "\n"
+ "ID number: " + IDNumber + "\n"
+ "Year of birth: " + birthYear + "\n";

}

I Display the state of author1 (an instance of Person):

System.out.println(author1.toString());
System.out.println(author1);

I System.out.println and System.out.print automatically
apply method toString() to an object that appears in their
argument list

38 / 59

The Method equals

/** Compares two Person objects for equality.
@param per The second Person object
@return true if the Person objects have same

ID number; false if they don’t

*/
public boolean equals(Person per) {

if (per == null)
return false;

else
return IDNumber.equals(per.getIDNumber());

}
}

We can look at per’s private ID number because per references an
object of this class (Person)

39 / 59

Testing Class Person

public class TestPerson {
public static void main(String[] args) {
Person p1 = new Person("Sam", "Jones", "1234", 1930);
Person p2 = new Person("Sue", "Jones", "5678", 1990);

System.out.println("Age of " + p1.getGivenName() +
" is " + p1.age(2012));

// prints: Age of Sam is 82

}

40 / 59

Testing Class Person

public class TestPerson {
public static void main(String[] args) {
Person p1 = new Person("Sam", "Jones", "1234", 1930);
Person p2 = new Person("Sue", "Jones", "5678", 1990);

if (p1.isSenior(2004))
System.out.println(p1.getGivenName() +

" can ride the subway for free");
else
System.out.println(p1.getGivenName() +

" must pay to ride the subway");

// prints: Sam can ride the subway for free

}
}

41 / 59

Testing Class Person

public class TestPerson {
public static void main(String[] args) {
Person p1 = new Person("Sam", "Jones", "1234", 1930);
Person p2 = new Person("Sue", "Jones", "5678", 1990);

System.out.println("Age of " + p2.getGivenName() +
" is " + p2.age(2012));

// prints: Age of Sue is 22

if (p2.canVote(2004))
System.out.println(p2.getGivenName()+" can vote");

else
System.out.println(p2.getGivenName()+" can’t vote");

// prints: Sue can’t vote

}
}

42 / 59

Java Basics
Classes
Methods
An Example

Arrays

More Java
Type Compatibility and Conversion
Referencing Objects
Parameter Passing is Call-by-Value
More Java Tidbits

43 / 59

Arrays

int[] scores = new int[5];

I Declares an array of size 5

I First item starts at index 0

I Arrays are initialized by default in Java

I This prints five zeros

int[] scores = new int[5];
for (int i=0; i<5; i++) {
System.out.println(scores[i]);

};

44 / 59

Arrays

I We can also initialize the elements with our own values

String[] names = {"Sally", "Jill", "Hal", "Rick"};
System.out.println(names.length);
// length above is data field, not a method

I The elements of an array can also have user defined types

Person[] people;
int n = 3+4;
people = new Person[n];
people[0] = new Person("Elliot","Koffman","123",1942);

45 / 59

Arrays

I There is an enhanced for loop for collections, arrays included

I Rather than

for (int i=0; i<5; i++) {
System.out.println(scores[i]);

};

I We can write

for (int i : scores) {
System.out.println(scores[i]);

};

46 / 59

Two-Dimensional Arrays

final int ROWS = 3;
final int COLS = 3;
double[][] matrix = new double[ROWS][COLS];

for (int i =0; i<ROWS; i++) {
for (int j=0; j<COLS; j++) {

System.out.println(matrix[i][j]);
}

}

47 / 59

Java Basics
Classes
Methods
An Example

Arrays

More Java
Type Compatibility and Conversion
Referencing Objects
Parameter Passing is Call-by-Value
More Java Tidbits

48 / 59

Type Compatiblity and Conversion

I When mixed type operands are used, the type with the smaller
range is converted to the type of the larger range

I E.g. int+double is converted to double

I Widening conversion

int item = 42;
double realItem = item; // valid ?

double y = 3.14;
int x = y; // valid ?

“Type mismatch: cannot convert from double to int”

49 / 59

Type Compatiblity and Conversion

I When mixed type operands are used, the type with the smaller
range is converted to the type of the larger range

I E.g. int+double is converted to double

I Widening conversion

int item = 42;
double realItem = item; // valid ?

double y = 3.14;
int x = y; // valid ?

“Type mismatch: cannot convert from double to int”

49 / 59

Type Compatiblity and Conversion

I We can add a type cast to instruct the compiler that y should
be considered as having type int

double y = 3.14;
int x = (int) y;

50 / 59

Referencing Objects

String greeting;
greeting = "hello";

I String object “hello” is now referenced by greeting

I greeting stores the address where a particular String is stored

I Primitive types store values not addresses (Eg. x=3)

I Two reference variables can reference the same object

String welcome=greeting;

I copies the address in greeting to welcome

51 / 59

Referencing Objects – Copying an Array

I Assignment copies only references to objects

I Eg. The following prints 8

int[] data1 = {1,2,3,4,5};
int[] data2 = data1;
data2[0] = 8;
System.out.println(data1[0]);

I In order to make a copy of an array we use the clone method

I Eg. The following prints 1

int[] data1 = {1,2,3,4,5};
int[] data2 = data1.clone();
data2[0] = 8;
System.out.println(data1[0]);

52 / 59

Parameter Passing is Call-by-Value

I In Java all arguments are call-by-value

I If the argument is a primitive type, its value, not its address,
are passed to the method

I The method cannot modify the argument value and have this
modification remain after returning

I If the argument is of class type, it can be modified using its
own methods and the changes are permanent

I Other languages also support call-by-reference

53 / 59

Parameter Passing is Call-by-Value

public void foo(Dog d) {
d = new Dog("Snoopy"); // creates the "Snoopy" dog

}

Dog aDog = new Dog("Pluto"); // creates the "Pluto" dog
// aDog points to the "Pluto" dog
foo(aDog);
// aDog still points to the "Pluto" dog

54 / 59

The Math Class

I Collection of useful methods

I All static

public class SquareRoots {
public static void main(String[] args) {

System.out.println("n \tsquare root");
for (int n = 1; n <= 10; n++) {

System.out.println(n + "\t" +
Math.sqrt(n));

}
}

}

55 / 59

The String Class

Assume keyboard is a String that contains ”qwerty”

keyboard.charAt(0) // q
keyboard.length() // 6
keyboard.indexOf(’o’) // -1
keyboard.indexOf(’y’) // 5
String upper=keyboard.toUpperCase();

Creates a new string object without changing keyboard

56 / 59

Strings are Immutable

I Strings are different from other objects in that they are
immutable

I A String object cannot be modified

I New Strings are generated when changes are made

String myName = "Elliot Koffman";
myName = myName.substring(7) + ", " + myName.substring(0, 6); // "Koffman, Elliot"

myName[0]= ’X’; // invalid, String is not an Array
myName.charAt(0)= ’X’; // invalid

57 / 59

Comparing Objects

String myName = "Elliot Koffman";
String anyName = new String(myName);
System.out.println(anyName == myName); // false
System.out.println(anyName.equals(myName)); // true

I == operator compares the addresses and not the contents of
the objects

I Use equals, equalsIgnoreCase, compareTo (lexicographic
comparison), compareToIgnoreCase

I Comparison methods need to be implemented for user-defined
classes

58 / 59

Wrapper Class for Primitive Types

I Primitive numeric types are not objects, but sometimes they
need to be processed like objects

I Eg. When primitive types must be inserted into collections

I Java provides wrapper classes whose objects contain
primitive-type values

byte Byte

boolean Boolean

char Character

double Double

float Float

int Integer

long Long

short Short

I They provide constructor methods to create new objects that
“wrap” a specified value and methods to “unwrap”

I This is typically done automatically in most cases (process
known as autoboxing)

59 / 59

	Java Basics
	Classes
	Methods
	An Example

	Arrays
	More Java
	Type Compatibility and Conversion
	Referencing Objects
	Parameter Passing is Call-by-Value
	More Java Tidbits

