
CS 284: Homework 3
Due: Tuesday, March 8th, 2022 at 11:59pm

1 Assignment Policies
Don’t forget the honor pledge!

Collaboration Policy. Homework will be done individually: each student must hand in
their own answers. It is acceptable for students to collaborate in understanding the material
but not in solving the problems or programming. Use of the Internet is allowed, but should
not include searching for existing solutions.

Under absolutely no circumstances code can be exchanged between students.
Excerpts of code presented in class can be used.

Assignments from previous offerings of the course must not be re-used. Viola-
tions will be penalized appropriately.

2 Assignment
This short assignment is meant to give you practice with recursion, which we will be using
to define more interesting data structures after the midterm.

3 Submission instructions
Submit a single file named Recursion.zip through Canvas that has the following structure:

src/
cs284/

Permutations.java
BinarySearch.java

No report is required. Your grade will be determined as follows:

• You will get 0 if your code does not compile.

• The code must implement the following UML diagram precisely. Helper functions are
of course allowed.

1

• You implementation of Permutations.allPermutations and BinarySearch.binarySearch must
use recursion in an essential way to receive more than 50% credit. (Permutations.allInsertions
can be implemented however you like.)

• Your code style and readability count for “style points”.

4 Permutations of a list
For this section, all of your functions should go on a class Permutations. We’d like to you
define a static method allPermutations that takes a list and returns a list of lists, containing
every possible permutation of the input. You should not alter the input list in any way (i.e.,
do not call any destructive methods, like remove). For example, the following code:

1 public static void main(String [] args) {
2 List <String > l = new LinkedList < >();
3 l.add("a");
4 l.add("b");
5 l.add("c");
6

7 for (var perm : allPermutations (l)) {
8 StringBuffer sb = new StringBuffer ();
9

10 for (var s : perm) {
11 sb. append (s);
12 }
13

14 System .out. println (sb);
15 }
16 }

Produces the following output:

abc
bac
bca
acb
cab
cba

Your code should produce output in the same order. To get more than 50% credit, you
must use recursion to implement allPermutations. It’s okay to have a loop in there, so long
as recursion is used meaningfully. (It’s very hard to write this code without recursion,
anyway.) We recommend the following recipe:

• Use List.get(int) to select the first element.

• Use List.sublist(int,int) to select the sublist of all remaining elements. (NB this
method is very cheap, as the sublist won’t allocate a whole new list, but instead offer
a ‘view’ of the original list.)

• For each permutation of the sublist (here you may use a loop), use the allInsertions(E, List<E>)
helper method to get the list of lists that puts the first element in each possible position.

2

• Return the accumulated, inserted permutations.

To implement allInsertions, you’ll want to create copies of the input list, putting the
inserted element in each possible position. This code is probably easiest to write with a for

loop, but recursion works great, too. Either implementation is okay.
Here’s an example of how allInsertions works. The following code:

1 public static void main(String [] args) {
2 List <String > l = new LinkedList < >();
3 l.add("a");
4 l.add("b");
5 l.add("c");
6

7 for (var lIns : allInsertions ("!", l)) {
8 System .out. println (lIns);
9 }

10 }

Should produce the following output:

[!, a, b, c]
[a, !, b, c]
[a, b, !, c]
[a, b, c, !]

Our tester will exercise both of your functions, so be certain to make them public static.
You may define other helpers as necessary (but we didn’t need any). Be sure to test both
functions!

4.1 Performance
The following questions are not part of the homework, but they are stimulating to think
about. If given a list l of length n, how many lists will allPermutations(l) produce? What is
the big-O complexity class of allInsertions? What about allPermutations?

5 Binary search
Binary search is a fast algorithm for finding an element in a sorted list. Here’s the intuition:
suppose we’re looking for the number 10 in a list of sorted numbers. We glance at the list
and see the number 50. If the list is sorted ascending, we know that if 10 is in the list, it’s
to the left of 50—we can ignore everything to the right, since it’s greater than or equal to
50 which is greater than 10.

The algorithm is called binary search, because we cut the elements we’re looking at—the
range of the list we’re considering—in half every time. Here’s the idea to find a needle/target
element v in a list of n elements:

1. Start out with a lower bound of lo = 0 and an upper bound of hi = n (exclusive). These
define our current range.

2. Look at the middle element of our range (i.e., mid = lo + ((hi-lo) / 2)), call it x.

3

(a) If v is equal to x, return the index mid.
(b) If v is less than x, recursively search from lo to mid (exclusive).
(c) If v is greater than x, recursively search from mid+1 to hi (exclusive).

3. If lo >= hi, the element is not in the list; you should return -1.

4. Go back to step (2).

It’s also possible to structure this function so that the upper index is inclusive, rather than
exclusive. Doing so will slightly change the termination condition.

We ask you to implement a method BinarySearch.binarySearch(E, E[]). You’ll notice that
method has no lo or hi arguments. Your method should call a private static helper method
to do the binary search. To receive more than 50% credit, your helper method must do its
work using recursion, not iteration. That is, there should be no loops of any kind in your
BinarySearch class.

5.1 Performance
Binary search is a more complicated algorithm than linear search—it’s very easy to get it
wrong! But it comes with a huge advantage: it is much more performant. If your list is
sorted, binary search is very much superior to linear search.

A deep analysis requires some more advanced tools (induction, and some careful math).
But we can sketch it out here, again using “number of comparisons” as our measure.

In the best case, our element is exactly in the middle. We found it on our first go, making
only one comparison.

In the worst case, our element isn’t in the list. How many elements will be consider?
Each time we run the loop, our range halves. How many times can we run the loop before
our range shrinks to nothing (i.e, hi <= lo) and we have to give up? The number of times
you can halve a number corresponds to its logarithm base 2 a/k/a its binary logarithm,
written log2(n).

Logarithmic performance is fantastic. Why? Well, suppose we have 1000 elements.
Linear search will step through the list from start to finish, performing 1000 comparisons
before giving up. We’ll perform log2(1000) comparisons. If you know that 210 = 1024, you
can guess how many comparisons, but we can also just compute:

1000/2 = 500
500/2 = 250
250/2 = 125
125/2 ' 62
62/2 = 31
31/2 ' 15
15/2 ' 7
7/2 ' 3
3/2 ' 1
1/2 ' 0

4

We can expect 10 comparisons before giving up. That’s a huge improvement over linear
search’s 1000 comparisons! On 2000 elements, we’d have 11 comparisons, while linear search
would do... 2000! Double yikes!

Our average case resembles the worst case—given uniform distribution, we can expect
to do no more than log2(n) comparisons.

6 Technical details
6.1 UML
The class Permutations should include the following operations:

Permutations

public static <E> List< List<E> > allInsertions(E elt, List<E> l);
public static <E> List< List<E> > allPermutations(List<E> l);

The class BinarySearch should include the following operations:

BinarySearch

public static < E extends Comparable<? super E> > int binarySearch(E elt, E[] a);

As always, helper functions are allowed.

6.2 Fancy parametric signatures
Both Permutations and BinarySearch defined special parametric methods. So far, we’ve only
put parameters on classes, which are ‘global’ for the whole class. Here, our type parameters
are per-method.

The syntax is modifiers <T,...> ret-type name(arg-type arg-name, ...). The type parame-
ters T (etc.) is in scope for both ret-type and for each arg-type.

There’s a new syntax for BinarySearch. For the binarySearch static method, we have
a bounded type parameter E. Here, we given an upper bound on E, saying E must be a
subclass of Comparable<? super E>. Since Comparable is an interface, ‘subclass of’ really means
implements. That is, we can only call binarySearch on arrays that hold Es that implement
Comparable<? super E>.

So... what does Comparable<? super E> mean? Here, we give an upper bound on the pa-
rameter of Comparable. That is, each E must be able to compared to some type T such that
T is a super type of E. We could have said Comparable<E> to say that E must be comparable
directly to itself. But that ends up being too specific. Suppose the type E is integers; we
might say that E is comparable not just to other integers, but rationals or reals, too. If we
required Comparable<E>, then being comparable to a super type wouldn’t work.

To sum up: all of these bounds on binarySearch combine to say that we only work with
types E that can be compared to themselves (and maybe other things, too).

5

	Assignment Policies
	Assignment
	Submission instructions
	Permutations of a list
	Performance

	Binary search
	Performance

	Technical details
	UML
	Fancy parametric signatures

