
CS 284: Homework 2
Due: Thursday, February 17th, 2022 at 11:59pm

1 Assignment Policies
Don’t forget the honor pledge!

Collaboration Policy. Homework will be done individually: each student must hand in
their own answers. It is acceptable for students to collaborate in understanding the material
but not in solving the problems or programming. Use of the Internet is allowed, but should
not include searching for existing solutions.

Under absolutely no circumstances code can be exchanged between students.
Excerpts of code presented in class can be used.

Assignments from previous offerings of the course must not be re-used. Viola-
tions will be penalized appropriately.

2 Assignment
This assignment consists in implementing a double-linked list with fast accessing. Fast
accessing is provided by an internal index. An index is just an array-based list that
stores references to nodes. (Such a structure isn’t actually useful in the world—but it’s
a nice way to simultaneously give you practice working with linked-list nodes and using the
java.util.ArrayList interface.)

Before going further, let’s take a step back and recall some basic notions regarding
double-linked lists.

As explained in the lectures, a double-linked list (DLL) is a list in which each node has a
reference to the next one and also a reference to the previous one. The corresponding Java
class therefore has three data fields or attributes:

• Node head

• Node tail

• int size

1



You should, in general, access the elements of the list through the references head and
tail. For example, the i-th element is obtained by starting from head and then jumping
through i−1 nodes. You implementation includes an additional attribute, namely an index.
An index is simply a list based array that stores the references to each node in the DLL.
Since the access to an element in an array-based list is O(1). You should (a) maintain the
index to be correct, and (b) give simpler implementations for methods involving indices.

As usual, please put everything in the cs284 package.

2.1 Design of the Class IDLList<E>

2.1.1 The Inner Class Node

First of all, an inner class Node should be declared. This class should include three data
fields:

• E data

• Node next

• Node prev

It should also include the following operations:

• Node(E elem), a constructor that creates a node holding elem.

• Node(E elem, Node prev, Node next), a constructor that creates a node holding elem, with
next as next and prev as prev.

2.1.2 The Class IDLList<E>

The class IDLList<E> should include the declaration of this inner private class Node. Apart
from that, it should have four data fields:

• Node<E> head

• Node tail

• int size

• ArrayList<Node> indices

Note that indices is an array-based list of references to nodes. A reference to the first
element of list is therefore available as the first element of indices. A reference to the second
element of the list is therefore the second element in indices. And so on.

You are requested to implement the following operations (a summary is provided at the
end of this assignment, in a UML diagram) for IDLList<E>:

• public IDLList(), that creates an empty double-linked list.

2



• public boolean add(int index, E elem) that adds elem at position index (counting from
wherever head is). It uses the index for fast access. Following java.util.List, valid
indices are in the range 0 to size (inclusive). (Calling add(size, elem) makes elem the
new tail.) It always returns true.

• public boolean add(E elem) that adds elem at the head (i.e. it becomes the first element
of the list). It always returns true.

• public boolean append(E elem) that adds elem as the new last element of the list (i.e. at
the tail). It always returns true.

• public E get(int index) that returns the object at position index from the head. It uses
the index for fast access. Indexing starts from 0, thus get(0) returns the head element
of the list.

• public E getFirst() that returns the object at the head.

• public E getLast() that returns the object at the tail.

• public int size() that returns the list size.

• public E removeFirst() that removes and returns the element at the head. Should throw
an IndexOutOfBoundsException if there is no such element.

• public E removeLast() that removes and returns the element at the tail. Should throw
an IndexOutOfBoundsException if there is no such element.

• public E removeAt(int index) that removes and returns the element at the index index.
Use the index for fast access. Should throw an IndexOutOfBoundsException if there is no
such element.

• public boolean remove(E elem) that removes the first occurrence of elem in the list and
returns true. Return false if elem was not in the list.

• public String toString(). That presents a string representation of the list. It should
use a Python-like notation for output, with square brackets and commas, deferring to
E’s toString() method for the elements. For example, if your list l contains the strings
"hello" and "how are ya" and "goodbye", in that order, then l.toString() should yield
"[hello, how are ya, goodbye]".

The following operations require index maintenance (i.e. they have to assign or modify
the index):

• public IDLList().

• public boolean add(int index, E elem).

• public boolean add(E elem).

• public boolean append(E elem).

• public E remove().

3



• public E removeLast().

• public E removeAt(int index).

• public boolean remove(E elem).

2.1.3 The Class IDLListTest

We expect you to write tests for your code; they are part of your submission. You should
use JUnit.

We will grade your tests based on how well they rule out bad implementations while
accepting good ones. There are two key points here that you should keep in mind while
writing your tests:

• Your tests should not be too restrictive. Any correct implementation should pass your
tests, not just your implementation.

• Your tests should not be too permissive. Incorrect implementations should not pass
your tests.

Think carefully about what behaviors to test for!

3 Submission instructions
Submit a single file named IDLList.zip through Canvas that includes src/cs284/IDLList.java
and src/cs284/IDLListTest.java with your test cases. No report is required. Your grade
will be determined as follows:

• You will get 0 if your code does not compile.

• The code must implement the following UML diagram precisely.

• We will try to feed erroneous and inconsistent inputs to all methods. All arguments
should be checked. Throw an IllegalArgumentException for bad arguments in
general—but you should use a IndexOutOfBoundsException for index-related errors.

• Partial credit may be given for style, comments and readability.

The class IDLList<E> should include the following operations:

4



IDLList<E>

private Node head
private Node tail
private int size
private ArrayList<Node> indices

public IDLList()
public boolean add(int index, E elem)
public boolean add(E elem)
public boolean append(E elem)
public E get(int index)
public E getFirst()
public E getLast()
public int size()
public E removeFirst()
public E removeLast()
public E removeAt(int index)
public boolean remove(E elem)
public String toString()

The private inner class Node should follow the UML diagram. Note that since it’s an inner
class, it inherits the parent class IDLList<E>’s parameter E, and doesn’t get parameterized
itself:

Node

E data
Node next
Node prev

Node(E elem)
Node(E elem, Node prev, Node next)

5


	Assignment Policies
	Assignment
	Design of the Class !IDLList<E>!
	The Inner Class !Node!
	The Class !IDLList<E>!
	The Class !IDLListTest!


	Submission instructions

